【CF708D】Incorrect Flow
题意:给你一个点数为n,边数为m的流网络,每条边有一个容量c和流量f,这个网络可能是不合法的。你可以花费1的代价使c或f减少或增加1,可以修改无限次。你不需要使流量最大,你只需要花费最少的代价把原图改造成一个合法的网络。
$n,mle 100,c,fle 10^6$
题解:我们用有上下界的费用流来解决这个问题。
对于一条边a->b,如果c>f,则我们从a到b连一条下界和上界都是f,费用为0的边;因为可以减少流量,所以连一条从b到a,容量为f,费用为1的边;因为可以增加流量,所以连一条从a到b,容量为c-f,费用为1的边;因为可以同时增加容量和流量,所以连一条从a到b,容量为inf,费用为2的边。
如果c<f,则我们先补充f-c个容量,直接将其加到答案中去,然后连一条从a到b,下界和上界都是f,费用为0的边;因为可以同时增加流量和容量,所以连一条从a到b,容量为inf,费用为2的边;因为可以减少流量,当减少量<f-c时,我们可以撤销一开始增加容量的操作,所以连一条从b到a,容量为f-c,费用为0的边;当减少量>f-c时,我们连一条从b到a,容量为c,费用为1的边。
跑最小费用可行流即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
int n,m,cnt,ans,S,T;
int to[100010],nxt[100010],head[210],cost[100010],flow[100010],dis[210],pe[210],pv[210],inq[210],ml[210];
queue<int> q;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int bfs()
{
int i,u;
memset(dis,0x3f,sizeof(dis));
q.push(S),dis[S]=0;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=nxt[i]) if(flow[i]&&dis[to[i]]>dis[u]+cost[i])
{
dis[to[i]]=dis[u]+cost[i],pe[to[i]]=i,pv[to[i]]=u;
if(!inq[to[i]]) q.push(to[i]),inq[to[i]]=1;
}
}
return dis[T]<0x3f3f3f3f;
}
inline void add(int a,int b,int c,int d)
{
to[cnt]=b,cost[cnt]=c,flow[cnt]=d,nxt[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,nxt[cnt]=head[b],head[b]=cnt++;
}
int main()
{
n=rd(),m=rd();
int i,a,b,c,f;
S=0,T=n+1;
memset(head,-1,sizeof(head));
for(i=1;i<=m;i++)
{
a=rd(),b=rd(),c=rd(),f=rd();
if(c<f)
{
ans+=f-c;
ml[a]+=f,ml[b]-=f;
add(b,a,0,f-c),add(b,a,1,c),add(a,b,2,1<<30);
}
else
{
ml[a]+=f,ml[b]-=f;
add(a,b,1,c-f),add(a,b,2,1<<30),add(b,a,1,f);
}
}
add(n,1,0,1<<30);
for(i=1;i<=n;i++)
{
if(ml[i]>=0) add(i,T,0,ml[i]);
else add(S,i,0,-ml[i]);
}
while(bfs())
{
f=1<<30;
for(i=T;i!=S;i=pv[i]) f=min(f,flow[pe[i]]);
ans+=dis[T]*f;
for(i=T;i!=S;i=pv[i]) flow[pe[i]]-=f,flow[pe[i]^1]+=f;
}
printf("%d",ans);
return 0;
}