zoukankan      html  css  js  c++  java
  • HDU 2084 DP

    HDU 2084:https://vjudge.net/problem/HDU-2084

    Problem Describe :

    When it comes to the DP algorithm, a classic example is the tower problem, which is described as:There are towers as shown below, which require walking from the top to the bottom. If each step can only go to an adjacent node, what is the maximum number of nodes passing through?

    Keyworld in problem is  "maximun",so we can consider DP. After we think the problem,we can divide this problem into many subproblem,,The problem has the best substructure properties.If the solution to the subproblem contained in the optimal solution of the problem is also optimal, we call the problem the optimal substructure property.

    Firstly,we can analyze the question and write the table which reflects the optimum solution of every elements.we use i and j to represent rows and columns.it has N rows and N columns,so we can draw N*N table.in this question ,5*5 is ok.

    when i = N,then the optimum solution is element itself.

    4 5 2 6 5

    i = N-1,the optimum solution is max(i,j) = MAX{max(i+1,j),max(i+1,j+1)}+elem[i][j].

    7 12 10 10  

    i = N-2 .. ... 1,follow above.

    so the complete table is:

    30        
    23 21      
    20 13 10    
    7 12  10 10  
    5 2 6 5

    So the  sate equation is:

     

     AC Code :

     1 #include <iostream>
     2 #include <algorithm>
     3 #include <bits/stdc++.h>
     4 using namespace std;
     5 const int N = 101;
     6 int Elem[N][N];
     7 int DP[N][N];
     8 int main()
     9 {
    10     int n,T;
    11     cin>>T;
    12     while(T--)
    13     {
    14         cin>>n;
    15         for(int i = 1;i <= n;++i)
    16             for(int j = 1;j <= i;j++)
    17                 cin>>Elem[i][j];
    18         for(int i = 1;i <= n;i++)
    19             DP[n][i] = Elem[n][i];
    20         for(int i = n-1;i >= 1;--i)
    21             for(int j = 1;j <= i;++j)
    22                 DP[i][j] = max(DP[i+1][j],DP[i+1][j+1])+Elem[i][j];
    23         cout<<DP[1][1]<<endl;
    24     }
    25     return 0;
    26 }
  • 相关阅读:
    原生JS回去顶部
    5月31日の勉強レポート
    5月30日の勉強レポート
    (转)日语自我介绍大全
    5月29日の勉強レポート
    5月28日の勉強レポート
    5月27日の勉強レポート
    5月26日の勉強レポート
    5月25日の勉強レポート
    5月24日の勉強レポート
  • 原文地址:https://www.cnblogs.com/CS-WLJ/p/11183572.html
Copyright © 2011-2022 走看看