zoukankan      html  css  js  c++  java
  • 【动态规划】POJ-3176

    一、题目

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:

            7
          3   8
        8   1   0
      2   7   4   4
    4   5   2   6   5
    

    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30
    Hint

    Explanation of the sample:

            7
           *
          3   8
         *
        8   1   0
         *
      2   7   4   4
         *
    4   5   2   6   5
    

    The highest score is achievable by traversing the cows as shown above.

    二、思路&心得

    ​简单的动态规划问题,从底向上依次扫描就行了,可以用直接用DP,也可以用记忆化搜索。

    三、代码

    1.DP:

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MAX_N = 355;
    
    int N;
    int dp[MAX_N][MAX_N];
    
    void solve() {
    	for (int i = 0; i < N; i ++) {
    		for (int j = 0; j <= i; j ++) {
    			scanf("%d", &dp[i][j]);			
    		}
    	}
    	for (int i = N - 2; i >=0; i --) {
    		for (int j = 0; j <= i; j ++) {
    			dp[i][j] += max(dp[i + 1][j], dp[i + 1][j + 1]);
    		}
    	}
    	printf("%d
    ", dp[0][0]);
    }
    
    int main() {
    	while (~scanf("%d", &N)) {
    		solve();
    	}
    	return 0;
    }
    

    2.记忆化搜索:

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int MAX_N = 355;
    
    int N;
    int dp[MAX_N][MAX_N];
    int visit[MAX_N][MAX_N];
    
    int score(int x, int y) {
    	if (visit[x][y] == 1) return dp[x][y];
    	visit[x][y] = 1;
    	if (x == N - 1) return dp[x][y];
    	return dp[x][y] += max(score(x + 1, y), score(x + 1, y + 1));
    }
    
    void solve() {
    	for (int i = 0; i < N; i ++) {
    		for (int j = 0; j <= i; j ++) {
    			scanf("%d", &dp[i][j]);			
    		}
    	}
    	printf("%d
    ", score(0, 0));
    }
    
    int main() {
    	while (~scanf("%d", &N)) {
    		solve();
    	}
    	return 0;
    }
    
  • 相关阅读:
    大厂面试高频Redis,记不住的多操作几次吧
    自动化测试系列之jenkins配置搭建环境
    关于linux服务器的磁盘监控的相关知识
    前端常见一些安全问题及解决方案
    如何使用PM2部署前端项目
    vuex状态管理器本地持久化
    关于在Vue中Typescript的写法
    websocket快速重连机制
    如何使用selenium打开多个浏览器
    运维人员踩坑记录之netplan遇坑,配置临时IP巧妙解决
  • 原文地址:https://www.cnblogs.com/CSLaker/p/7398183.html
Copyright © 2011-2022 走看看