zoukankan      html  css  js  c++  java
  • DeepLearning.aiWeek2Residual Networks

    1 - Import Packages

    import numpy as np
    from keras import layers
    from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
    from keras.models import Model, load_model
    from keras.preprocessing import image
    from keras.utils import layer_utils
    from keras.utils.data_utils import get_file
    from keras.applications.imagenet_utils import preprocess_input
    import pydot
    from IPython.display import SVG
    from keras.utils.vis_utils import model_to_dot
    from keras.utils import plot_model
    from resnets_utils import *
    from keras.initializers import glorot_uniform
    import scipy.misc
    from matplotlib.pyplot import imshow
    %matplotlib inline
    
    import keras.backend as K
    K.set_image_data_format('channels_last')
    K.set_learning_phase(1)

    2 - The problem of very deep neural networks

      更深的网络可以表示更复杂的函数,可以学习更多层次上的特征表示。但深层网络存在梯度消失或者梯度爆炸问题。随着训练的进行,可以看到网络前面的网络层的梯度迅速下降为0。构建$Residual Network$可以解决这个问题。

    3 - Building a Residual Network

      $Residual Network$中通过跳远连接(捷径)避免梯度消失/爆炸。跳远连接使得学习恒等函数也变得容易,所以更深的网络可以确保其效率和性能至少不低于比更浅的网络。

    3.1 - The identity block

    # GRADED FUNCTION: identity_block
    
    def identity_block(X, f, filters, stage, block):
        """
        Implementation of the identity block as defined in Figure 3
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        
        Returns:
        X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value. You'll need this later to add back to the main path. 
        X_shortcut = X
        
        # First component of main path
        X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = "valid", name = conv_name_base + "2a", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2a")(X)
        X = Activation("relu")(X)
        
        ### START CODE HERE ###
        
        # Second component of main path (≈3 lines)
        X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1, 1), padding = "same", name = conv_name_base + "2b", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2b")(X)
        X = Activation("relu")(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1, 1), padding = "valid", name = conv_name_base + "2c", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2c")(X)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X, X_shortcut])
        X = Activation("relu")(X)
        
        ### END CODE HERE ###
        
        return X
    Result:
    out = [ 0.94822997  0.          1.16101444  2.747859    0.          1.36677003]

    3.2 - The convolutional block

    # GRADED FUNCTION: convolutional_block
    
    def convolutional_block(X, f, filters, stage, block, s = 2):
        """
        Implementation of the convolutional block as defined in Figure 4
        
        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        f -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        s -- Integer, specifying the stride to be used
        
        Returns:
        X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
        """
        
        # defining name basis
        conv_name_base = 'res' + str(stage) + block + '_branch'
        bn_name_base = 'bn' + str(stage) + block + '_branch'
        
        # Retrieve Filters
        F1, F2, F3 = filters
        
        # Save the input value
        X_shortcut = X
    
    
        ##### MAIN PATH #####
        # First component of main path 
        X = Conv2D(F1, (1, 1), strides = (s, s), padding="valid", name = conv_name_base + "2a", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2a")(X)
        X = Activation("relu")(X)
        
        ### START CODE HERE ###
    
        # Second component of main path (≈3 lines)
        X = Conv2D(F2, (f, f), strides = (1, 1), padding="same", name = conv_name_base + "2b", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2b")(X)
        X = Activation("relu")(X)
    
        # Third component of main path (≈2 lines)
        X = Conv2D(F3, (1, 1), strides = (1, 1), padding="valid", name = conv_name_base + "2c", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = bn_name_base + "2c")(X)
    
        ##### SHORTCUT PATH #### (≈2 lines)
        X_shortcut = Conv2D(F3, (1, 1), strides = (s, s), padding="valid", name = conv_name_base + "1", kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
        X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + "1")(X_shortcut)
    
        # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
        X = Add()([X, X_shortcut])
        X = Activation("relu")(X)
        
        ### END CODE HERE ###
        
        return X
    tf.reset_default_graph()
    
    with tf.Session() as test:
        np.random.seed(1)
        A_prev = tf.placeholder("float", [3, 4, 4, 6])
        X = np.random.randn(3, 4, 4, 6)
        A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
        test.run(tf.global_variables_initializer())
        out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
        print("out = " + str(out[0][1][1][0]))
    Result:
    out = [ 0.09018463  1.23489785  0.46822023  0.03671762  0.          0.65516603]

    4 - Building your first ResNet model (50 layers)

      "ID BLOCK"代表"Identity block","ID BLOCK x3"代表需要堆叠3个"Identity block"在一起。

    # GRADED FUNCTION: ResNet50
    
    def ResNet50(input_shape = (64, 64, 3), classes = 6):
        """
        Implementation of the popular ResNet50 the following architecture:
        CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
        -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
    
        Arguments:
        input_shape -- shape of the images of the dataset
        classes -- integer, number of classes
    
        Returns:
        model -- a Model() instance in Keras
        """
        
        # Define the input as a tensor with shape input_shape
        X_input = Input(input_shape)
    
        
        # Zero-Padding
        X = ZeroPadding2D((3, 3))(X_input)
        
        # Stage 1
        X = Conv2D(64, (7, 7), strides = (2, 2), name = "conv1", kernel_initializer = glorot_uniform(seed=0))(X)
        X = BatchNormalization(axis = 3, name = "bn_conv1")(X)
        X = Activation("relu")(X)
        X = MaxPooling2D((3, 3), strides=(2, 2))(X)
    
        # Stage 2
        X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block="a", s = 1)
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
        X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
    
        ### START CODE HERE ###
    
        # Stage 3 (≈4 lines)
        X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block = "a", s = 2)
        X = identity_block(X, 3, [128, 128, 512], stage=3, block="b")
        X = identity_block(X, 3, [128, 128, 512], stage=3, block="c")
        X = identity_block(X, 3, [128, 128, 512], stage=3, block="d")
    
        # Stage 4 (≈6 lines)
        X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block = "a", s = 2)
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block="b")
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block="c")
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block="d")
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block="e")
        X = identity_block(X, 3, [256, 256, 1024], stage=4, block="f")
    
        # Stage 5 (≈3 lines)
        X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block = "a", s = 2)
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block="b")
        X = identity_block(X, 3, [512, 512, 2048], stage=5, block="c")
    
        # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
        X = AveragePooling2D(pool_size=(2, 2), name="avg_pool")(X)
        
        ### END CODE HERE ###
    
        # output layer
        X = Flatten()(X)
        X = Dense(classes, activation="softmax", name="fc" + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
        
        
        # Create model
        model = Model(inputs = X_input, outputs = X, name="ResNet50")
    
        return model
    model = ResNet50(input_shape = (64, 64, 3), classes = 6)
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    
    # Normalize image vectors
    X_train = X_train_orig/255.
    X_test = X_test_orig/255.
    
    # Convert training and test labels to one hot matrices
    Y_train = convert_to_one_hot(Y_train_orig, 6).T
    Y_test = convert_to_one_hot(Y_test_orig, 6).T
    
    print ("number of training examples = " + str(X_train.shape[0]))
    print ("number of test examples = " + str(X_test.shape[0]))
    print ("X_train shape: " + str(X_train.shape))
    print ("Y_train shape: " + str(Y_train.shape))
    print ("X_test shape: " + str(X_test.shape))
    print ("Y_test shape: " + str(Y_test.shape))
    Result:
    number of training examples = 1080
    number of test examples = 120
    X_train shape: (1080, 64, 64, 3)
    Y_train shape: (1080, 6)
    X_test shape: (120, 64, 64, 3)
    Y_test shape: (120, 6)

    SIGNS Dataset

    model.fit(X_train, Y_train, epochs = 2, batch_size = 32)
    Result:
    Epoch 1/2
    1080/1080 [==============================] - 245s 227ms/step - loss: 3.0501 - acc: 0.2611
    Epoch 2/2
    1080/1080 [==============================] - 240s 223ms/step - loss: 2.3643 - acc: 0.3185
    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    Result:
    120/120 [==============================] - 8s 68ms/step
    Loss = 13.4317462285
    Test Accuracy = 0.166666667163
    model = load_model('ResNet50.h5') 
    preds = model.evaluate(X_test, Y_test)
    print ("Loss = " + str(preds[0]))
    print ("Test Accuracy = " + str(preds[1]))
    Result: 
    120/120 [==============================] - 17s 142ms/step
    Loss = 0.530178316434
    Test Accuracy = 0.866666662693

    5 - Summary

    model.summary()
    Result:
    (略)
    plot_model(model, to_file='model.png')
    SVG(model_to_dot(model).create(prog='dot', format='svg'))
    Result:
    (略)

    6 - References

    https://web.stanford.edu/class/cs230/

  • 相关阅读:
    Tomcat启动过程[更详细]
    数据库连接池原理
    Druid
    Spring的注解积累
    React基础知识
    mac里git项目删除.DS_Store文件
    GET请求参数为中文时乱码分析
    npm中package.json详解
    前后端分离工具之ftl-server
    利用performance属性查看网页性能
  • 原文地址:https://www.cnblogs.com/CZiFan/p/9488670.html
Copyright © 2011-2022 走看看