Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______
/
___5__ ___1__
/ /
6 _2 0 8
/
7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
经典问题!
方法一:找到两个节点的路径,然后根据路径找LCA。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void getPath(TreeNode *root, TreeNode *p, TreeNode *q, vector<TreeNode*> &path, vector<TreeNode *> &path1, vector<TreeNode*> &path2) {
if (root == NULL) return;
path.push_back(root);
if (root == p) path1 = path;
if (root == q) path2 = path;
//找到两个节点后就可以退出了
if (!path1.empty() && !path2.empty()) return;
getPath(root->left, p, q, path, path1, path2);
getPath(root->right, p, q, path, path1, path2);
path.pop_back();
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> path, path1, path2;
getPath(root, p, q, path, path1, path2);
TreeNode *res = root;
int idx = 0;
while (idx < path1.size() && idx < path2.size()) {
if (path1[idx] != path2[idx]) break;
else res = path1[idx++];
}
return res;
}
};
方法二:节点a与节点b的公共祖先c一定满足:a与b分别出现在c的左右子树上(如果a或者b本身不是祖先的话)。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == NULL) return NULL;
if (root == p || root == q) return root;
TreeNode *L = lowestCommonAncestor(root->left, p, q);
TreeNode *R = lowestCommonAncestor(root->right, p, q);
if (L && R) return root;
return L ? L : R;
}
};