zoukankan      html  css  js  c++  java
  • cf492E. Vanya and Field(扩展欧几里得)

    题意

    $n imes n$的网格,有$m$个苹果树,选择一个点出发,每次增加一个偏移量$(dx, dy)$,最大化经过的苹果树的数量

    Sol

    上面那个互素一开始没看见,然后就GG了

    很显然,若$n$和$dx$互素的话,每个$x$都能到达

    我们预处理出在每个点$x = 0$时的$y$,取一下最大值即可

    求解需要用到扩展欧几里得

    /*
    
    */
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<map>
    #include<vector>
    #include<set>
    #include<queue>
    #include<cmath>
    //#include<ext/pb_ds/assoc_container.hpp>
    //#include<ext/pb_ds/hash_policy.hpp>
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define int long long 
    #define LL long long 
    #define ull unsigned long long 
    #define rg register 
    #define pt(x) printf("%d ", x);
    //#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
    //char buf[(1 << 22)], *p1 = buf, *p2 = buf;
    //char obuf[1<<24], *O = obuf;
    //void print(int x) {if(x > 9) print(x / 10); *O++ = x % 10 + '0';}
    //#define OS  *O++ = ' ';
    using namespace std;
    //using namespace __gnu_pbds;
    const int MAXN = 1e6 + 10, INF = 1e9 + 10, mod = 1e9 + 7;
    const double eps = 1e-9;
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    
    int N, M, dx, dy, a, b;
    int num[MAXN];
    int exgcd(int a, int b, int &x, int &y) {
        if(!b) {x = 1; y = 0; return a;}
        int r = exgcd(b, a % b, x, y);
        int tmp = x; x = y; y = tmp - a / b * y;
        return r;
    }
    main() {    
        N = read(); M = read(); dx = read(); dy = read();
        int ans = 0;
        int x, y;
        for(int i = 1; i <= M; i++) {
            x = read(), y = read();
            if(x == 0) {num[y]++; if(num[y] > num[ans]) ans = y;continue;}
            int r = exgcd(dx, N, a, b);
            a = (a + N) % mod;
            a = (a * x) % N;
        //    a = 
            y = (y - a * dy % N + N) % N;
            num[y]++;
            if(num[y] > num[ans]) ans = y;
        }
        printf("%d %d", 0, ans);
        
        return 0;
    }
    /*
    
    */
  • 相关阅读:
    JAVA Number类
    ConcurrentHashMap.Segment源码解析
    Java Concurrent包初探
    JAVA枚举类
    构造不可变类及其优点
    Unsafe类初探
    Paxos made simple 翻译尝试
    平行二叉堆和优先队列
    Android OpenCV学习
    Android-Java和HTML5交互-混合开发-优化
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9585924.html
Copyright © 2011-2022 走看看