zoukankan      html  css  js  c++  java
  • 《任务导向型对话系统——对话管理模型研究最新进展》(2019-12-26)阅读笔记【每一段都值得好好读】

    原文链接:https://mp.weixin.qq.com/s/6wSz8wAi0vrHebZ0EJ2sZA
    作者:戴音培、虞晖华、蒋溢轩、唐呈光、李永彬、孙健
    发布时间:2019-12-26

    1950年,图灵测试。

    第一代对话系统:基于规则的对话系统。

    1966年,MIT开发的ELIZA系统,基于模版匹配方法的心理医疗聊天机器人。

    1970年,基于流程图的对话系统,采用有限状态自动机建模对话流中的状态转移。内部逻辑透明,易于调试,高度依赖专家的人工干预,灵活性和可拓展性差。

    第二代对话系统:基于统计学方法的数据驱动的对话系统。

    最具代表性的是剑桥大学Steve Young教授于2005年提出的基于部分可见马尔可夫决策过程。Partially Observable Markov Decision Process , POMDP(http://mi.eng.cam.ac.uk/~sjy/papers/ygtw13.pdf)该系统在鲁棒性上显著地优于基于规则的对话系统。但是模型难以维护,可拓展性也比较受限。

    第三代对话系统:基于深度学习的对话系统。自然语言理解(A network-based end-to-end trainable task-oriented dialogue system),对话状态,对话策略(Sample-efficient actor-critic reinforcement learning with supervised data for dialogue management)。

    Facebook提出的基于记忆网络的任务对话系统,第三代对话系统效果优于第二代系统,但是需要大量带标注数据才能进行有效训练。

    常见的对话系统可分为三类:聊天型,任务导向型和问答型。

    随着用户对产品体验的要求逐渐提高,实际对话场景更加复杂,对话管理模块也需要更多的改进和创新。传统的对话管理模型通常是建立在一个明确的话术体系内(即先查找再问询最后结束),一般会预定义好系统动作空间、用户意图空间和对话本体,但是实际中用户的行为变化难测,系统的应答能力十分有限,这就会导致传统对话系统可拓性差的问题(难以处理预定义之外的情况)。

    另外,在很多的真实业界场景,存在大量的冷启动问题,缺少足量的标注对话数据,数据的清洗标注成本代价高昂。而在模型训练上,基于深度增强学习的对话管理模型一般都需要大量的数据,大部分论文的实验都表明,训练好一个对话模型通常需要几百个完整的对话 session,这样低下的训练效率阻碍了实际中对话系统的快速开发和迭代。

    对话管理模型痛点一:可拓展性差

    DST + Dialogue Policy

    • 变化的用户意图
    • 变化的槽位和槽值
    • 变化的系统动作

    对话管理模型痛点二:标注数据少

    • 机器自动标注
    • 对话结构挖掘
    • 数据采集策略

    对话管理模型痛点三:训练效率低

  • 相关阅读:
    redis在java项目中的使用
    Nginx+Tomcat搭建高性能负载均衡集群
    Redis 数据类型
    MySQL 索引概述
    Spring boot 中的WebMvcConfigurerAdapter、WebMvcConfigurationSupport与WebMvcConfigurer区别
    DAO与DTO名词解释
    FindBugs-IDEA插件的使用
    Map 中有 HashMap、TreeMap、HashTable、LinkedHashMap,首先简单说一下他们之间的区别:
    javax.el.PropertyNotFoundException:
    内省(introspector)------>JavaBean
  • 原文地址:https://www.cnblogs.com/CheeseZH/p/12114944.html
Copyright © 2011-2022 走看看