zoukankan      html  css  js  c++  java
  • 如何用tensorflow实现MLP

    """ Multilayer Perceptron.
    A Multilayer Perceptron (Neural Network) implementation example using
    TensorFlow library. This example is using the MNIST database of handwritten
    digits (http://yann.lecun.com/exdb/mnist/).
    Links:
        [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).
    Author: Aymeric Damien
    Project: https://github.com/aymericdamien/TensorFlow-Examples/
    """
    
    # ------------------------------------------------------------------
    #
    # THIS EXAMPLE HAS BEEN RENAMED 'neural_network.py', FOR SIMPLICITY.
    #
    # ------------------------------------------------------------------
    
    
    from __future__ import print_function
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    import tensorflow as tf
    
    # Parameters
    learning_rate = 0.001
    training_epochs = 15
    batch_size = 100
    display_step = 1
    
    # Network Parameters
    n_hidden_1 = 256 # 1st layer number of neurons
    n_hidden_2 = 256 # 2nd layer number of neurons
    n_input = 784 # MNIST data input (img shape: 28*28)
    n_classes = 10 # MNIST total classes (0-9 digits)
    
    # tf Graph input
    X = tf.placeholder("float", [None, n_input])
    Y = tf.placeholder("float", [None, n_classes])
    
    # Store layers weight & bias
    weights = {
        'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    
    # Create model
    def multilayer_perceptron(x):
        # Hidden fully connected layer with 256 neurons
        layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
        # Hidden fully connected layer with 256 neurons
        layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
        # Output fully connected layer with a neuron for each class
        out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
        return out_layer
    
    # Construct model
    logits = multilayer_perceptron(X)
    
    # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
        logits=logits, labels=Y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op)
    # Initializing the variables
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
    
        # Training cycle
        for epoch in range(training_epochs):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_x, batch_y = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([train_op, loss_op], feed_dict={X: batch_x,
                                                                Y: batch_y})
                # Compute average loss
                avg_cost += c / total_batch
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".format(avg_cost))
        print("Optimization Finished!")
    
        # Test model
        pred = tf.nn.softmax(logits)  # Apply softmax to logits
        correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print("Accuracy:", accuracy.eval({X: mnist.test.images, Y: mnist.test.labels}))
    
  • 相关阅读:
    轮子来袭 vJine.Core Orm 之 03_架构分析
    轮子来袭 vJine.Core 之 AppConfig<T>
    C# 数据类型映射 (SQLite,MySQL,MSSQL,Oracle)
    炫酷 2048 完全免费 色彩无线 流畅如飞
    DebugLog 打印方法执行时间
    [转] charles使用教程指南
    Macbook Pro配置PHP开发环境
    基于ubuntu 14搭建nginx+php+mysql环境
    Android Studio -修改LogCat的颜色
    [转]
  • 原文地址:https://www.cnblogs.com/CheeseZH/p/13403167.html
Copyright © 2011-2022 走看看