zoukankan      html  css  js  c++  java
  • HDU 6026(最短路)

        题面:

    Deleting Edges

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1154    Accepted Submission(s): 407


    Problem Description
    Little Q is crazy about graph theory, and now he creates a game about graphs and trees.
    There is a bi-directional graph with n nodes, labeled from 0 to n1. Every edge has its length, which is a positive integer ranged from 1 to 9.
    Now, Little Q wants to delete some edges (or delete nothing) in the graph to get a new graph, which satisfies the following requirements:
    (1) The new graph is a tree with n1 edges.
    (2) For every vertice v(0<v<n), the distance between 0 and v on the tree is equal to the length of shortest path from 0 to v in the original graph.
    Little Q wonders the number of ways to delete edges to get such a satisfied graph. If there exists an edge between two nodes i and j, while in another graph there isn't such edge, then we regard the two graphs different.
    Since the answer may be very large, please print the answer modulo 109+7.
     

    Input
    The input contains several test cases, no more than 10 test cases.
    In each test case, the first line contains an integer n(1n50), denoting the number of nodes in the graph.
    In the following n lines, every line contains a string with n characters. These strings describes the adjacency matrix of the graph. Suppose the j-th number of the i-th line is c(0c9), if c is a positive integer, there is an edge between i and j with length of c, if c=0, then there isn't any edge between i and j.
    The input data ensure that the i-th number of the i-th line is always 0, and the j-th number of the i-th line is always equal to the i-th number of the j-th line.
     

    Output
    For each test case, print a single line containing a single integer, denoting the answer modulo 109+7.
     

    Sample Input
    2 01 10 4 0123 1012 2101 3210
     

    Sample Output
    1 6
     

    Source
     

        题目描述:给你一张图,每次你都可以删除一条边,要求删除的边之后,整个图的最短路不发生改变。问一共会有多少种图的可能性。
        题目分析:这是一道最短路的变形思维题。拿到题目时,我们不能看到题目中要求我们删边而被删边限制住了思维。首先我们得思考,如果删除掉一条边,而使整张图的最短路不变,那么可以认为,这条路径是对整张图的最短路没有贡献的。再进一步思考,如果一条路径对最短路没有贡献,那么可以看作在跑最短路的过程的松弛操作中,d[to]==cost+d[pre]; 即此时的这条路径跟原有最短路径重合,因此这条边即使可以删去的边。因此我们在跑最短路的过程中,不断寻找满足路径等于原有最短路的边,并使这条路径的子结点的入度加一(表示存在这么一条可以删的边)。最后我们只需要枚举所有的点,将所有可以删除的边累乘起来即是我们所要求的答案。

        

    #include <bits/stdc++.h>
    #define maxn 55
    #define maxm 5008
    using namespace std;
    typedef pair<int,int>PLL;
    typedef long long ll;
    const int INF=0x3f3f3f3f;
    const int mod=1e9+7;
    struct edge{
        int next,to,cost;
    }q[maxm];
    int head[maxm],cnt,d[maxm];
    int n;
    ll inde[maxm];
    bool vis[maxm];
    char str[maxn][maxn];
    void add_edge(int from,int to,int cost){
        q[cnt].cost=cost;
        q[cnt].to=to;
        q[cnt].next=head[from];
        head[from]=cnt++;
    }
    void dijk(){
        priority_queue<PLL,vector<PLL>,greater<PLL> >que;
        memset(vis,0,sizeof(vis));
        memset(d,INF,sizeof(d));
        d[0]=0;
        que.push(PLL(0,0));
        inde[0]=1;
        while(!que.empty()){
            PLL p=que.top();
            que.pop();
            int x=p.second;
            vis[x]=1;
            for(int i=head[x];i!=-1;i=q[i].next){
                edge e=q[i];
                if(vis[e.to]) continue;
                if(d[e.to]>p.first+e.cost){
                    inde[e.to]=1;
                    d[e.to]=p.first+e.cost;
                    que.push(PLL(d[e.to],e.to));
                }
                else if(d[e.to]==p.first+e.cost){
                    inde[e.to]++;
                }
            }
        }
    }
    void init(){
        memset(head,-1,sizeof(head));
        cnt=0;
    }
    int main()
    {
        while(cin>>n){
            init();
            for(int i=0;i<n;i++){
                scanf("%s",str[i]);
                for(int j=0;j<n;j++){
                    if(str[i][j]!='0'){
                        add_edge(i,j,str[i][j]-'0');
                    }
                }
            }
            dijk();
            ll ans=1;
            for(int i=0;i<n;i++){
                ans*=inde[i];
                ans%=mod;
            }
            cout<<ans<<endl;
        }
        return 0;
    }
    

  • 相关阅读:
    SWTDesigner注册器
    C# 创建、部署和调用WebService的简单示例
    (android实战)应用在线版本更新
    jQuery获取Select选择的Text和 Value(转)
    Android 判断sd卡和sim卡是否可用
    Android开发中如何固定屏幕显示!
    入侵网站简单方法总结
    【Android】防止UI界面被输入法遮挡(画面随输入法自适应)
    关于字符编码的问题
    最好用的mysql密码忘记的解决方法
  • 原文地址:https://www.cnblogs.com/Chen-Jr/p/11007312.html
Copyright © 2011-2022 走看看