zoukankan      html  css  js  c++  java
  • LuoGuP4721:【模板】分治 FFT

    Pre

    式子变换需要注意一下

    Solution

    注意到(f(x)g(x)+f_0=f(x))

    其实开始我没看出来,后来发现仔细分析一下就可以了。

    然后式子变换

    (f(x)=frac{f_0}{1-g(x)})

    注意这里的(1-)是只减常数项,因为这里的(f(x))(g(x))是指的函数,而不是系数。

    Code

    #include <cstdio>
    #include <queue>
    #include <cstring>
    #define ll long long
    #define xx first
    #define yy second
    using namespace std;
    inline void swap (int &a, int &b) {
    	int c = a;
    	a = b,
    	b = c;
    }
    const int N = 250000 + 5, mod = 998244353, inver = 332748118;
    int nn, g[N], f[N];
    inline int add (int u, int v) {return u + v >= mod ? u + v - mod : u + v;}
    inline int mns (int u, int v) {return u - v < 0 ? u - v + mod : u - v;}
    inline int mul (int u, int v) {return 1LL * u * v % mod;}
    inline int qpow (int u, int v) {
    	int tot = 1, base = u % mod;
    	while (v){
    		if (v & 1) tot = mul (tot, base);
    		base = mul (base, base);
    		v >>= 1;
    	}
    	return tot;
    }
    int c[N], rev[N];
    inline void NTT (int *a, int n, int bit, bool flag) {
    	for (int i = 0; i < n; ++i) {
    		rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
    		if (i > rev[i]) swap (a[i], a[rev[i]]);
    	}
    	for (int l = 2; l <= n; l <<= 1) {
    		int wi = qpow (flag ? inver : 3, (mod - 1) / l);
    		int m = l / 2;
    		for (int *k = a; k != a + n; k += l) {
    			int w = 1;
    			for (int i = 0; i < m; ++i) {
    				int tmp = mul (k[i + m], w);
    				k[i + m] = mns (k[i], tmp);
    				k[i] = add (k[i], tmp);
    				w = mul (w, wi);
    			}
    		}
    	}
    	int tmp = qpow (n, mod - 2);
    	for (int i = 0; i < n && flag; ++i) {
    		a[i] = mul (a[i], tmp);
    	}
    }
    inline void Inv (int *a, int *b, int deg) {
    	if (deg == 1) {
    		b[0] = qpow (a[0], mod - 2);
    		return ;
    	}
    	Inv (a, b, (deg + 1) >> 1);
    	int n = 1, bit = 0;
    	while (n < (deg << 1)) n <<= 1, ++bit;
    	for (int i = 0; i < deg; ++i) c[i] = a[i]; for (int i = deg; i < n; ++i) c[i] = 0;
    	NTT (c, n, bit, false);
    	NTT (b, n, bit, false);
    	for (int i = 0; i < n; ++i) b[i] = mns (mul (2, b[i]), mul (c[i], mul (b[i], b[i])));
    	NTT (b, n, bit, true);
    	for (int i = deg; i < n; ++i) b[i] = 0;
    }
    int main () {
    	#ifdef chitongz
    	freopen ("x.in", "r", stdin);
    	#endif
    	scanf ("%d", &nn);
    	for (int i = 1; i <= nn - 1; ++i) scanf ("%d", &g[i]), g[i] = mns (mod, g[i]);
    	g[0] = add (g[0], 1);
    	Inv (g, f, nn);
    	for (int i = 0; i < nn; ++i) printf ("%d ", f[i]);
    	puts ("");
    	return 0;
    }
    

    Conclusion

    注意一下什么时候系数减法,什么时候常熟减法。

  • 相关阅读:
    JAVA错误:Unable to find config file. Creating new servlet engine config file: /WEBINF/serverconfig.wsdd
    java axis发布web service(二) 发布web service
    JAVA错误:AXIS Web Service Problem: No compiler found in your classpath! (you may need to add ‘tools.jar’)
    JAVA错误:java.lang.UnsupportedClassVersionError: Bad version number in .class file
    JavaScript中的div和filter错误
    拉格朗日乘数法
    Timeout Detection & Recovery (TDR)
    游戏程序员关心的Autodesk Maya 2013相关操作
    Eclipse开发Android程序如何在手机上运行
    我的第一篇随笔
  • 原文地址:https://www.cnblogs.com/ChiTongZ/p/11351252.html
Copyright © 2011-2022 走看看