zoukankan      html  css  js  c++  java
  • [BZOJ] 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐

    1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐

    Time Limit: 5 Sec  Memory Limit: 64 MB
    Submit: 786  Solved: 484
    [Submit][Status][Discuss]

    Description

    The cows are having a picnic! Each of Farmer John's K (1 <= K <= 100) cows is grazing in one of N (1 <= N <= 1,000) pastures, conveniently numbered 1...N. The pastures are connected by M (1 <= M <= 10,000) one-way paths (no path connects a pasture to itself). The cows want to gather in the same pasture for their picnic, but (because of the one-way paths) some cows may only be able to get to some pastures. Help the cows out by figuring out how many pastures are reachable by all cows, and hence are possible picnic locations.

      K(1≤K≤100)只奶牛分散在N(1≤N≤1000)个牧场.现在她们要集中起来进餐.牧场之间有M(1≤M≤10000)条有向路连接,而且不存在起点和终点相同的有向路.她们进餐的地点必须是所有奶牛都可到达的地方.那么,有多少这样的牧场呢?

    Input

    * Line 1: Three space-separated integers, respectively: K, N, and M * Lines 2..K+1: Line i+1 contains a single integer (1..N) which is the number of the pasture in which cow i is grazing. * Lines K+2..M+K+1: Each line contains two space-separated integers, respectively A and B (both 1..N and A != B), representing a one-way path from pasture A to pasture B.

     第1行输入K,N,M.接下来K行,每行一个整数表示一只奶牛所在的牧场编号.接下来M行,每行两个整数,表示一条有向路的起点和终点

    Output

    * Line 1: The single integer that is the number of pastures that are reachable by all cows via the one-way paths.

        所有奶牛都可到达的牧场个数

    Sample Input

    2 4 4
    2
    3
    1 2
    1 4
    2 3
    3 4


    INPUT DETAILS:

    4<--3
    ^ ^
    | |
    | |
    1-->2

    The pastures are laid out as shown above, with cows in pastures 2 and 3.

    Sample Output

    2

    牧场3,4是这样的牧场.

    HINT

     

    Source

    Silver

    Analysis

    DFS模拟奶牛走路就行了

    Code

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #define maxn 100000
     5 using namespace std;
     6 
     7 struct edge{
     8     int from,v;
     9 }e[maxn];
    10 
    11 int mark[maxn],cow[maxn],k,n,m;
    12 bool book[maxn];
    13 
    14 int tot,first[maxn];
    15 void insert(int u,int v){tot++;e[tot].from = first[u],e[tot].v = v,first[u] = tot;}
    16 
    17 void dfs(int now){
    18     mark[now]++;
    19     for(int i = first[now];i;i = e[i].from){
    20         int v = e[i].v;
    21         if(!book[v]){
    22             book[v] = true;
    23             dfs(v);
    24         }
    25     }
    26 }
    27 
    28 int main(){
    29     scanf("%d%d%d",&k,&n,&m);
    30     
    31     for(int i = 1;i <= k;i++)
    32         scanf("%d",&cow[i]);
    33     
    34     for(int i = 1;i <= m;i++){
    35         int a,b;
    36         scanf("%d%d",&a,&b);
    37         insert(a,b);
    38     }
    39     
    40     for(int i = 1;i <= k;i++){
    41         memset(book,false,sizeof(book));
    42         book[cow[i]] = true;
    43         dfs(cow[i]);
    44     }
    45     
    46     int ans = 0;
    47     for(int i = 1;i <= n;i++) if(mark[i] == k) ans++;
    48     cout << ans;
    49     
    50     return 0;
    51 }
    = =
    转载请注明出处 -- 如有意见欢迎评论
  • 相关阅读:
    Redis 集群方案
    Redis集群搭建
    Java并发问题--乐观锁与悲观锁以及乐观锁的一种实现方式-CAS
    为什么分布式一定要有Redis?
    如何准备Java初级和高级的技术面试
    SpringBoot自动配置原理
    高德地图-- 云图管理台
    GeoJSON格式规范说明
    webGis概念
    npm压缩js文件
  • 原文地址:https://www.cnblogs.com/Chorolop/p/7565380.html
Copyright © 2011-2022 走看看