zoukankan      html  css  js  c++  java
  • 平衡二叉树AVL的一些基本概念(读书整理)

    二叉树

    左子树都小于根节点,右子树都大于根节点。可以动态维护这棵树(因为是树结构,可以有限步完成插入),所以是动态查找算法。时间复杂度为O(logn)在46.5%的情况下,需要把二叉树平衡化成“平衡二叉树”。

    平衡二叉树

    平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。

    定义:平衡二叉树或为空树,或为如下性质的二叉排序树:

      (1)左右子树深度之差的绝对值不超过1;

      (2)左右子树仍然为平衡二叉树.

     平衡因子

    平衡因子bf=左子树深度-右子树深度,每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。增加一个元素后,平衡二叉树有可能变成不平衡了,所以需要旋转平衡调整。如图所示为平衡树和非平衡树示意图:

     

    平衡二叉树算法思想

    若 向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。

     (1)LL型平衡旋转法

    由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。 即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。而原来B的右子树则变成A的左子树。

     

    (2)RR型平衡旋转法

    由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。而原来C的左子树则变成A的右子树。

     

    (3)LR型平衡旋转法

    由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。即先使之成为LL型,再按LL型处理。

     

          如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为LL型,再按LL型处理成平衡型。

    (4)RL型平衡旋转法  

    由于在A的右孩子C的左子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行两次旋转操作(先顺时针,后逆时针),即先将A结点的右孩子C的左子树的根结点D向右上旋转提升到C结点的位置,然后再把该D结点向左上旋转提升到A结点的位置。即先使之成为RR型,再按RR型处理。

     如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为RR型,再按RR型处理成平衡型。

    平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。注意的是,左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。

    如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者 bf == -2的节点。

    插入和删除

    插入删除是互为镜像的操作。我们可以采用前面对二叉排序树的删除操作来进行。然后,在删除掉结点后,再对平衡树进行平衡化处理。删除之所以删除操作需要的平衡化可能比插入时次数多,就是因为平衡化不会增加子树的高度,但是可能会减少子树的高度,在有有可能使树增高的插入操作中,一次平衡化能抵消掉增高;在有可能使树减低的删除操作中,平衡化可能会带来祖先节点的不平衡。AVL树体现了一种平衡的美感,两种旋转是互为镜像的,插入删除是互为镜像的操作,没理由会有那么大的差别。实际上,平衡化可以统一的这样来操作:
    1、while (current != NULL)修改current的平衡因子。

    (1)插入节点时current->bf += (current->data > *p)?1:-1;

    (2)删除节点时current->bf -= (current->data > *p)?1:-1;

    (3)current指向插入节点或者实际删除节点的父节点,这是普通二叉搜索树的插入和删除操作带来的结果。*p初始值是插入节点或者实际删除节点的data。因为删除操作可能实际删除的不是data。

    2、判断是否需要平衡化

    if (current->bf == -2)     L_Balance(c_root);

    else if (current->bf == 2)  R_Balance(c_root);

    3、是否要继续向上修改父节点的平衡因子

    (1)插入节点时if (!current->bf) break;这时,以current为根的子树的高度和插入前的高度相同。

    (2)删除节点时if (current->bf) break;这时,以current为根的子树的高度和删除前的高度相同

    4、当前节点移动到父节点,转1。

    p = &(current->data); current = current->parent;

    欢迎大家提出问题,此贴正在整理中................

  • 相关阅读:
    Java接口(interface),扫盲贴
    Java抽象类,扫盲贴
    Java类的继承、super关键字、复写
    Java内部类,扫盲贴
    数据结构学习笔记1--简单排序
    7.1 通用的职责分配软件原则 GRASP原则一: 创建者 Creator
    6.6 面向对象设计
    6.5 开始进入设计 … Transition to Design
    6.4 操作契约 Operation Contracts
    6.3 契约式设计
  • 原文地址:https://www.cnblogs.com/Cmpl/p/2073217.html
Copyright © 2011-2022 走看看