前言
在训练深度学习模型时,常想一窥网络结构中的attention层权重分布,观察序列输入的哪些词或者词组合是网络比较care的。在小论文中主要研究了关于词性POS对输入序列的注意力机制。同时对比实验采取的是words的self-attention机制。
效果
下图主要包含两列:word_attention是self-attention机制的模型训练结果,POS_attention是词性模型的训练结果。
可以看出,相对于word_attention,POS的注意力机制不仅能够捕捉到评价的aspect,也能根据aspect关联的词借助情感语义表达的词性分布,care到相关词性的情感词。
核心代码
可视化样例
# coding: utf-8
def highlight(word, attn):
html_color = '#%02X%02X%02X' % (255, int(255*(1 - attn)), int(255*(1 - attn)))
return '<span style="background-color: {}">{}</span>'.format(html_color, word)
def mk_html(seq, attns):
html = ""
for ix, attn in zip(seq, attns):
html += ' ' + highlight(
ix,
attn
)
return html + "<br>"
from IPython.display import HTML, display
batch_size = 1
seqs = [["这", "是", "一个", "测试", "样例", "而已"]]
attns = [[0.01, 0.19, 0.12, 0.7, 0.2, 0.1]]
for i in range(batch_size):
text = mk_html(seqs[i], attns[i])
display(HTML(text))
接入model
需要在model的返回列表中,添加attention_weight的输出,理论上维度应该和输入序列的长度是一致的。
# load model
import torch
# if you train on gpu, you need to move onto cpu
model = torch.load("../docs/model_chk/2018-11-07-02:45:37", map_location=lambda storage, location: storage)
from torch.autograd import Variable
for batch_idx, samples in enumerate(test_loader, 0):
v_word = Variable(samples['word_vec'])
v_final_label = samples['top_label']
model.eval()
final_probs, att_weight = model(v_word, v_pos)
batch_words = toWords(samples["word_vec"].numpy(), idx_word) # id转化为word
batch_att = getAtten(batch_words, att_weight.data.numpy()) # 去除padding词,根据words的长度截取attention
labels = toLabel(samples['top_label'].numpy()) # 真实标签
pre_labels = toLabel(final_probs.data.numpy() >= 0.5) # 预测标签
for i in range(len(batch_words)):
text = mk_html(batch_words[i], batch_att[i])
print(labels[i], pre_labels[i])
display(HTML(text))
总结
- 建议把可视化独立出来,用jupyter-notebook编辑,方便分段调试和copy;同时因为是借助html渲染的,所以需要notebook
- 项目代码我后期后同步到github上,欢迎一起交流