zoukankan      html  css  js  c++  java
  • 排序算法——插入排序

    插入排序

    插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

    最早拥有排序概念的机器出现在1901至1904年间由Hollerith发明出使用基数排序法的分类机,此机器系统包括打孔,制表等功能,1908年分类机第一次应用于人口普查,并且在两年内完成了所有的普查数据和归档。 Hollerith在1896年创立的分类机公司的前身,为电脑制表记录公司(CTR)。他在电脑制表记录公司(CTR)曾担任顾问工程师,直到1921年退休。而电脑制表记录公司(CTR)在1924年正式改名为IBM

    算法描述

    一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

    1. 从第一个元素开始,该元素可以认为已经被排序
    2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
    3. 如果该元素(已排序)大于新元素,将该元素移到下一位置
    4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
    5. 将新元素插入到该位置中
    6. 重复步骤2~5

    如果比较操作的代价比交换操作大的话,可以采用二分查找法来减少比较操作的数目。该算法可以认为是插入排序的一个变种,称为二分查找排序

    [编辑] 示例代码

    void insertion_sort(char array[], unsigned int first, unsigned int last)
     {
            int i,j;
            int temp;
            for (i = first+1; i<=last;i++)
            {
                    temp = array[i];
                    j=i-1;
     
                    //与已排序的数逐一比较,大于temp时,该数移后
                    while((j>=first) && (array[j] > temp))  //当first=0,j循环到-1时,由于[[短路求值]],不会运算array[-1]
                    {
                            array[j+1] = array[j];
                            j--;
                    }
                    array[j+1] = temp;      //被排序数放到正确的位置
     
            }
     }
    

    算法复杂度

    如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数减去(n-1)次。平均来说插入排序算法复杂度为O(n2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。



  • 相关阅读:
    jchdl
    jchdl
    UVa 10256 (判断两个凸包相离) The Great Divide
    UVa 11168 (凸包+点到直线距离) Airport
    LA 2572 (求可见圆盘的数量) Kanazawa
    UVa 10652 (简单凸包) Board Wrapping
    UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
    UVa 10674 (求两圆公切线) Tangents
    UVa 11796 Dog Distance
    LA 3263 (平面图的欧拉定理) That Nice Euler Circuit
  • 原文地址:https://www.cnblogs.com/CodeWorkerLiMing/p/12007602.html
Copyright © 2011-2022 走看看