zoukankan      html  css  js  c++  java
  • Kuangbin 带你飞 数位DP题解

    以前一直不知道该咋搞这个比较好。

    感觉推起来那个数字好麻烦。后来有一种比较好的写法就是直接的DFS写法。相应的ismax表示当前位是否有限制。

    数位DP也是有一种类似模版的东西,不过需要好好理解。与其他模版不同。

    主要还是状态的定义

    模版就不整理了。直接上题。

    另外这里有一道题是数位DP+自动机的放到自动机里做

    HDU 2089 不要62

    基本的数位DP可以用来理解DFS写法

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 15;
    int dp[MAXN][2];
    int digit[MAXN],length;
    
    int calcu(int len,bool issix,bool ismax)
    {
        if (len == 0) return 1;
        if (!ismax && dp[len][issix] != -1) return dp[len][issix];
        int limit = ismax ? digit[len] : 9;
        int tot = 0;
        for (int i = 0 ; i <= limit ; i++)
        {
            if ((issix && i == 2) || i == 4 ) continue;
            tot += calcu(len - 1,i == 6 ,ismax && i == limit);
        }
        if (ismax) return tot;
        else return dp[len][issix] = tot;
    }
    
    int slove(int x)
    {
        int len = 0;
        int num = x;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,false,true);
    }
    
    int main()
    {
        memset(dp,-1,sizeof(dp));
        int l,r;
        while (scanf("%d%d",&l,&r) != EOF)
        {
            if (l == 0 && r == 0) break;
            if (l > r) swap(l,r);
            printf("%d
    ",slove(r) - slove(l - 1));
        }
        return 0;
    }
    View Code

    HDU 3555 Bomb

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 30;
    LL dp[MAXN][2];
    int digit[MAXN];
    
    LL calcu(int length,bool isfour,bool ismax)
    {
        if (length == 0) return 1;
        if (!ismax && dp[length][isfour] >= 0) return dp[length][isfour];
        LL tot = 0;
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            if (isfour && i == 9) continue;
            tot += calcu(length - 1,i == 4,ismax && i == limit);
        }
        if (!ismax) return dp[length][isfour] = tot;
        return tot;
    }
    
    LL slove(LL x)
    {
        int len = 0;
        LL num = x;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,false,true);
    }
    
    int main()
    {
        int T,kase = 1;
        scanf("%d",&T);
        memset(dp,-1,sizeof(dp));
        while (T--)
        {
            LL N;
            scanf("%I64d",&N);
            printf("%I64d
    ",N - slove(N) + 1);
        }
        return 0;
    }
    View Code

    POJ 3252 Round Numbers

    统计二进制形式中0的个数比1的个数不小的数字的数目

    很简单的只是进制变成了2进制,这里还要和下一个题目做一下比较。状态的定义不能想简单了

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 70;
    LL dp[MAXN][MAXN][MAXN];
    int digit[MAXN];
    
    LL calcu(int length,int preone,int prezero,bool zero,bool ismax)
    {
        if (length == 0) return prezero >= preone;
        if (!ismax && dp[length][preone][prezero] >= 0) return dp[length][preone][prezero];
        LL tot = 0;
        int limit = ismax ? digit[length] : 1;
        for (int i = 0 ; i <= limit ; i++)
        {
            int addone = 0,addzero = 0;
            if (i == 1) addone = 1;
            if (i == 0) addzero = 1;
            tot += calcu(length - 1,preone +addone,(zero && i == 0) ? 0 : prezero + addzero, zero && i == 0 ,ismax && i == limit);
        }
        if (!ismax) return dp[length][preone][prezero] = tot;
        return tot;
    }
    
    LL slove(LL x)
    {
        int len = 0;
        LL num = x;
        while (num)
        {
            digit[++len] = num % 2;
            num >>= 1;
        }
        return calcu(len,0,0,true,true);
    }
    
    int main()
    {
        LL l,r;
        memset(dp,-1,sizeof(dp));
        while (scanf("%I64d%I64d",&l,&r) != EOF)
        {
           // printf("%I64d
    ",slove(r));
            //printf("%I64d
    ",slove(l - 1));
            //printf("%I64d
    ",slove(l));
            printf("%I64d
    ",slove(r) - slove(l - 1));
        }
        return 0;
    }
    View Code

    Spoj BAlnum BALNUM - Balanced Numbers

    这个题题意是统计十进制形式中奇数出现偶数次,偶数出现奇数次的数字 个数

    为什么这道题状态不能向前边那个题,直接dp[i][j][k]第i位出现j个奇数k个偶数然后直接推,

    看起来很简单,然而这个状态是错的。为什么?考虑dp[5][3][2],他究竟表示什么。

    可以在记忆花过程中直接返回这个值么?13522后边若干位和14688后边若干位都是这个dp状态!!

    所以上述状态是错的。正确的是三进制状压。表示每个数字出现的次数的状态0,1,2

    具体看代码

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 30;
    const int MAXD = 60010;
    LL dp[MAXN][MAXD];
    int digit[MAXN];
    //order : 9 8 7 6 5 4 3 2 1 0;
    //num: 0 1 2 3 4 5 6 7 8 9
    //sta : 0 no 1 odd 2 even
    
    bool judge(int sta)
    {
        int num[15];
        for (int i = 0 ; i < 10 ; i++)
        {
            num[i] = sta % 3;
            sta /= 3;
        }
        for (int i = 0 ; i < 10 ; i++)
        {
            if (num[i] != 0)
            {
                if (i % 2 == 0 && num[i] == 2) return false;
                if (i % 2 == 1 && num[i] == 1) return false;
            }
        }
        return true;
    }
    
    int getsta(int x,int sta)
    {
        int num[15];
        for (int i = 0 ; i < 10 ; i++)
        {
            num[i] = sta % 3;
            sta /= 3;
        }
        if (num[x] == 0) num[x] = 1;
        else num[x] = 3 - num[x];
        int ret = 0;
        for (int i = 9 ; i >= 0 ; i--)
            ret = ret * 3 + num[i];
        return ret;
    }
    
    LL calcu(int length,int presta,bool zero,bool ismax)
    {
        if (length == 0) return judge(presta);
        if (!ismax && dp[length][presta] >= 0) return dp[length][presta];
        int limit = ismax ? digit[length] : 9;
        LL ret = 0;
        for (int i = 0 ; i <= limit ; i++)
        {
            ret += calcu(length - 1,(zero && i == 0) ? 0 : getsta(i,presta),zero && i == 0,ismax && i == limit);
        }
        if (!ismax) return dp[length][presta] = ret;
        return ret;
    }
    
    LL slove(LL x)
    {
        LL num = x;
        int len = 0;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,0,true,true);
    }
    
    int main()
    {
        int T;
        memset(dp,-1,sizeof(dp));
        scanf("%d",&T);
        while (T--)
        {
            LL l,r;
            scanf("%lld%lld",&l,&r);
            //cout << slove(r) << endl;
            printf("%lld
    ",slove(r) - slove(l - 1));
        }
        return 0;
    }
    View Code

    Codeforces 55D Beautiful numbers

    判断数字是否能整除他的十进制形式中所有非0数字的个数

    注意到能整除所有位数实际上就是能整除这些位数的LCM,最大就是2520

    那么状态定义dp[i][j][k] = val表示到达第i位对2520的摸为多少,当前的LCM为多少

    另外代码里对LCM进行了哈希

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    LL gcd(LL a, LL b) {return a % b == 0 ? b : gcd(b, a % b);}
    LL lcm(LL a,LL b) {return a / gcd(a,b) * b;}
    const int MAXN = 110;
    const int MAXD = 2600;
    const LL MOD = 2520;
    LL dp[30][MAXD][MAXN];
    int digit[MAXN];
    int Hash[MAXD];
    
    void init()
    {
        int cas = 0;
        for (int i = 1 ; i <= MOD ; i++)
        {
            if (MOD % i == 0)
                Hash[i] = ++cas;
        }
    }
    
    LL calcu(int length,int premod,int prelcm,bool ismax)
    {
        if (length == 0) return premod % prelcm == 0;
        if (!ismax && dp[length][premod][Hash[prelcm]] >= 0)
            return dp[length][premod][Hash[prelcm]];
        int limit = ismax ? digit[length] : 9;
        LL tot = 0;
        for (int i = 0 ; i <= limit ; i++)
        {
            int nextmod = (premod * 10 + i) % MOD;
            int nextlcm;
            if (i == 0) nextlcm = prelcm;
            else nextlcm = lcm(prelcm,i);
            tot += calcu(length - 1,nextmod,nextlcm,ismax && i == limit);
        }
        if (ismax) return tot;
        else return dp[length][premod][Hash[prelcm]] = tot;
    }
    
    LL slove(LL x)
    {
        LL num = x,len = 0;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,0,1,true);
    }
    
    int main()
    {
        init();
        memset(dp,-1,sizeof(dp));
        int T;
        scanf("%d",&T);
        while (T--)
        {
            LL l,r;
            scanf("%I64d%I64d",&l,&r);
           // cout << slove(r) << endl;
            printf("%I64d
    ",slove(r) - slove(l - 1));
        }
        return 0;
    }
    View Code

    HDU 3709 Balanced Number

    一开始觉得好难。后来发现只需要枚举支点。复杂度并不会高多少。20而已

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    //此题枚举支点即可不用想麻烦了。
    const int MAXN = 30;
    LL dp[MAXN][MAXN][MAXN * 100];
    int digit[MAXN];
    
    LL calcu(int length,int premid,int preval,bool ismax)
    {
        if (length == 0) return preval == 0;
        if (preval < 0) return 0;
        if (!ismax && dp[length][premid][preval] >= 0) return dp[length][premid][preval];
        LL tot = 0;
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            int add = (length - premid) * i;
            int nextval = preval + add;
            tot += calcu(length - 1,premid,nextval,ismax && i == limit);
        }
        if (!ismax) return dp[length][premid][preval] = tot;
        return tot;
    }
    
    LL slove(LL x)
    {
        int len = 0;
        LL num = x;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        LL ret = 0;
        for (int i = 1 ; i <= len ; i++)
            ret += calcu(len,i,0,true);
        return ret - len + 1;
    }
    
    int main()
    {
        memset(dp,-1,sizeof(dp));
        LL l,r;
        int T;
        scanf("%d",&T);
        while (T--)
        {
            scanf("%I64d%I64d",&l,&r);
            printf("%I64d
    ",slove(r) - slove(l - 1));
        }
        return 0;
    }
    View Code

    HDU 3652 B-number

    包含13且整除13的数字个数

    为什么不能直接dp[i][0/1]表示到达第i位是否出现13?同前面错误状态的比较

    代码

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 30;
    LL dp[MAXN][5][20];
    int digit[MAXN];
    
    LL calcu(int length,int presta,int premod,bool ismax)
    {
        if (length == 0) return (presta == 2 && premod == 0);
        if (!ismax && dp[length][presta][premod] >= 0) return dp[length][presta][premod];
        LL tot = 0;
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            int nextmod = (premod * 10 + i) % 13;
            int nextsta = presta;
            if (presta == 0 && i == 1) nextsta = 1;
            if (presta == 1 && i != 1) nextsta = 0;
            if (presta == 1 && i == 3) nextsta = 2;
            tot += calcu(length - 1,nextsta,nextmod,ismax && i == limit);
        }
        if (!ismax) return dp[length][presta][premod] = tot;
        return tot;
    }
    
    LL slove(LL x)
    {
        LL num = x;
        int len = 0;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,0,0,true);
    }
    
    int main()
    {
        memset(dp,-1,sizeof(dp));
        LL N;
        while (scanf("%I64d",&N) != EOF)
        {
            printf("%I64d
    ",slove(N));
        }
        return 0;
    }
    View Code

    HDU 4352 XHXJ's LIS

    统计数字表示中LIS==K的数字的个数

    这题状压+数位DP

    觉得好厉害。为什么状压。考虑nlognLIS是怎么做的。这里的数字只能是0-9

    所以状压。举个例子 1 2 4 6 是g数组,LIS = 4,现在来了个5.G数组变成 1 2 4 5 LIS仍然等于4

    考虑好NLOGN LIS 怎么来的。注意前导0和0!

    然后数位DP

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 30;
    LL dp[MAXN][(1 << 10) + 50][15];
    LL L,R,K;
    int digit[MAXN];
    
    int getsta(int x,int s)
    {
        for (int i = x ; i < 10 ; i++)
        {
            if (s & (1 << i))
            {
                return (s ^ (1 << i)) | (1 << x);
            }
        }
        return s | (1 << x);
    }
    
    int getnum(int x)
    {
        int ret = 0;
        while (x)
        {
            if (x & 1) ret++;
            x >>= 1;
        }
        return ret;
    }
    
    LL calcu(int length,int presta,bool prezero,bool ismax)
    {
        if (length == 0) return getnum(presta) == K;
        if (!ismax && dp[length][presta][K] >= 0) return dp[length][presta][K];
        LL tot = 0;
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            tot += calcu(length - 1,(i == 0 && prezero) ? 0 : getsta(i,presta),i == 0 && prezero,ismax && i == limit);
        }
        if (ismax) return tot;
        else return dp[length][presta][K] = tot;
    }
    
    LL slove(LL x)
    {
        int len = 0;
        LL num = x;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,0,true,true);
    }
    
    int main()
    {
        int T,kase = 1;
        memset(dp,-1,sizeof(dp));
        scanf("%d",&T);
        while (T--)
        {
            scanf("%I64d%I64d%I64d",&L,&R,&K);
            printf("Case #%d: %I64d
    ",kase++,slove(R) - slove(L - 1));
        }
        return 0;
    }
    View Code

    HDU 4734 f(x)

    数位DP的一维状态表示差值即可

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL int
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 15;
    const int MAXD = 100010;
    LL dp[20][MAXD];
    int digit[MAXN];
    LL val,A,B;
    
    LL calcu(int length,int preval,bool ismax)
    {
        if (length == 0) return preval >= 0;
        if (preval < 0) return 0;
        if (!ismax && dp[length][preval] >= 0) return dp[length][preval];
        LL tot = 0;
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            tot += calcu(length - 1,preval - (1 << (length - 1)) * i,ismax && i == limit);
        }
        if (!ismax) return dp[length][preval] = tot;
        return tot;
    }
    
    int f(int x)
    {
        int ret = 0,cas = 0;
        while (x)
        {
            ret += (x % 10) * (1 << cas);
            cas++;
            x /= 10;
        }
        return ret;
    }
    
    LL slove()
    {
        int len = 0;
        LL num = B;
        while (num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,f(A),true);
    }
    
    int main()
    {
        memset(dp,-1,sizeof(dp));
        int T,kase = 1;
        scanf("%d",&T);
        while (T--)
        {
            scanf("%d%d",&A,&B);
            printf("Case #%d: %d
    ",kase++,slove());
        }
        return 0;
    }
    View Code

    HDU 4507 

    主要是要求的不是数字个数。而是平方和。

    那么可能久有点问题了

    怎么做考虑(a + b1) ^ 2 + (a + b2) ^ 2 + .... 等于

    a^2 * n + b1^ 2 + b2 ^ 2 + ..bn ^ 2 + 2 * a * (b1 + b2 +... bn)

    上式实际上就是比如枚举到第3为a就1000,递归的找到b然后推即可

    于是dp有三个值。数字个数。一次方和,二次方和

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 25;
    const int MOD = 1e9 + 7;
    LL fac[20];
    typedef pair<int,pair<LL,LL> >PII;
    PII dp[MAXN][10][10][2];
    int digit[MAXN];
    bool vis[MAXN][10][10][2];
    
    PII calcu(int length,int presum,int remain,bool contain,bool ismax)
    {
        if (length == 0)
        {
            if (!contain && presum && remain)
                return make_pair(1,make_pair(0LL,0LL));
            else return make_pair(0,make_pair(0LL,0LL));
        }
        if (!ismax && vis[length][presum][remain][contain])
            return dp[length][presum][remain][contain];
        PII ret = make_pair(0,make_pair(0LL,0LL));
        int limit = ismax ? digit[length] : 9;
        for (int i = 0 ; i <= limit ; i++)
        {
            PII nxt = calcu(length - 1,(presum + i) % 7,(remain * 10 + i) % 7
                            ,contain || (i == 7),ismax && i == limit);
            LL preval = (LL)i * fac[length - 1] % MOD;
            ret.first = (ret.first + nxt.first) % MOD;
            ret.second.first = (ret.second.first + nxt.second.first + preval * nxt.first) % MOD;
            ret.second.second = (ret.second.second + nxt.second.second + 2 * preval * nxt.second.first % MOD
                                        + preval * preval % MOD * nxt.first) % MOD;
        }
        if(!ismax)
        {
            vis[length][presum][remain][contain] = true;
            dp[length][presum][remain][contain] = ret;
            return ret;
        }
        return ret;
    }
    
    LL slove(LL x)
    {
        int len = 0;
        LL num = x;
        while(num)
        {
            digit[++len] = num % 10;
            num /= 10;
        }
        return calcu(len,0,0,0,true).second.second;
    }
    
    int main()
    {
        fac[0] = 1;
        for (int i = 1 ; i < 20 ; i++) fac[i] = fac[i - 1] * 10 % MOD;
        int T;
        memset(vis,false,sizeof(vis));
        scanf("%d",&T);
        while (T--)
        {
            LL l,r;
            scanf("%I64d%I64d",&l,&r);
            printf("%I64d
    ",(slove(r) - slove(l - 1) + MOD) % MOD);
        }
        return 0;
    }
    View Code

    BCD CODE 放到自动机专题里在做

  • 相关阅读:
    如何处理CrashLoopBackOff状态的pod
    如何全方位的保障系统的稳定性
    Linux系统-网络带宽占用分析
    Docker之路-通过swarm管理配置及服务升级回滚
    Effective Java
    springboot websocket 简单入门
    JDK8 API文档
    Java反编译工具 Java Decompiler
    如何在高并发分布式系统中生成全局唯一ID
    Linux命令发送Http GET/POST请求
  • 原文地址:https://www.cnblogs.com/Commence/p/5041730.html
Copyright © 2011-2022 走看看