zoukankan      html  css  js  c++  java
  • 优惠券预测——数据探索1

    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    from datetime import date
    import datetime as dt
    from scipy import stats
    import warnings
    warnings.filterwarnings("ignore")
    %matplotlib inline
    # 导入CSV文件
    off_train = pd.read_csv('ccf_offline_stage1_train.csv', keep_default_na=False) off_train.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received', 'date'] off_test = pd.read_csv('ccf_offline_stage1_test_revised.csv', keep_default_na=False) off_test.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received'] on_train = pd.read_csv('ccf_online_stage1_train.csv', keep_default_na=False) on_train.columns = ['user_id', 'merchant_id', 'action', 'coupon_id', 'discount_rate', 'date_received', 'date']
    off_train.head()
    off_train.info()
    off_test.head()
    off_test.info()
    # 领券日期范围
    print('offline train date_received')
    print(off_train[off_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_train[off_train['date_received'] != 'null']['date_received'].max())
    
    print('online train date_received')
    print(on_train[on_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(on_train[on_train['date_received'] != 'null']['date_received'].max())
    
    print('offline test date_received')
    print(off_test[off_test['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_test[off_test['date_received'] != 'null']['date_received'].max())
    # 用券日期范围
    print('offline train date')
    print(off_train[off_train['date'] != 'null']['date'].min())# 非空日期
    print(off_train[off_train['date'] != 'null']['date'].max())
    
    print('online train date')
    print(on_train[on_train['date'] != 'null']['date'].min())# 非空日期
    print(on_train[on_train['date'] != 'null']['date'].max())
    # 训练集与测试集id的重合度
    # user_id
    off_train_user = off_train[['user_id']].copy().drop_duplicates()
    off_test_user = off_test[['user_id']].copy().drop_duplicates()
    on_train_user = on_train[['user_id']].copy().drop_duplicates()
    print('offline训练集用户ID数量')
    print(off_train_user.user_id.count())
    print('online训练集用户ID数量')
    print(on_train_user.user_id.count())
    print('offline测试集用户ID数量')
    print(off_test_user.user_id.count())
    off_train_user['off_train_flag']=1
    off_merge = off_test_user.merge(off_train_user, on='user_id', how="left").reset_index().fillna(0)# 索引,缺失值
    print('offline训练集用户与测试集用户的重复数量')
    print(off_merge['off_train_flag'].sum())
    print('offline训练集用户与测试集重复用户在总测试集用户中的占比')
    print(off_merge['off_train_flag'].sum()/off_test_user['user_id'].count())
    
    on_train_user['on_train_flag']=1
    on_merge = off_test_user.merge(on_train_user, on='user_id', how="left").reset_index().fillna(0)
    print('online训练集用户与测试集用户的重复数量')
    print(on_merge['on_train_flag'].sum())
    print('online训练集用户与测试集重复用户在总测试集用户中的占比')
    print(on_merge['on_train_flag'].sum()/off_test_user['user_id'].count())
    # 
    plt.rcParams['figure.figsize'] = (25.0, 4.0)
    plt.title("Value Distribution", fontsize=24)
    plt.xlabel("Values", fontsize=14)
    plt.ylabel("Counts", fontsize=14)
    plt.tick_params(axis='both', labelsize=14)
    plt.xticks(size='small', rotation=68, fontsize=8)
    plt.plot(off_train['discount_rate'].value_counts(), linewidth=2)
    plt.show()

  • 相关阅读:
    为什么不要在Spring的配置里,配置上XSD的版本号
    使用GIT管理UE4代码
    C++ 编程错误记录
    Maven 命令及其他备忘
    Windows API 之 CreateToolhelp32Snapshot
    Windows API 之 ReadProcessMemory
    Windows API 之 OpenProcessToken、GetTokenInformation
    利用未文档化API:RtlAdjustPrivilege 提权实现自动关机
    WindowsAPI 之 CreatePipe、CreateProcess
    错误: error C4996: 'strcpy': This function or variable may be unsafe. Consider using strcpy_s instead. 的处理方法
  • 原文地址:https://www.cnblogs.com/Cookie-Jing/p/14714870.html
Copyright © 2011-2022 走看看