zoukankan      html  css  js  c++  java
  • 优惠券预测——数据探索1

    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    from datetime import date
    import datetime as dt
    from scipy import stats
    import warnings
    warnings.filterwarnings("ignore")
    %matplotlib inline
    # 导入CSV文件
    off_train = pd.read_csv('ccf_offline_stage1_train.csv', keep_default_na=False) off_train.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received', 'date'] off_test = pd.read_csv('ccf_offline_stage1_test_revised.csv', keep_default_na=False) off_test.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received'] on_train = pd.read_csv('ccf_online_stage1_train.csv', keep_default_na=False) on_train.columns = ['user_id', 'merchant_id', 'action', 'coupon_id', 'discount_rate', 'date_received', 'date']
    off_train.head()
    off_train.info()
    off_test.head()
    off_test.info()
    # 领券日期范围
    print('offline train date_received')
    print(off_train[off_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_train[off_train['date_received'] != 'null']['date_received'].max())
    
    print('online train date_received')
    print(on_train[on_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(on_train[on_train['date_received'] != 'null']['date_received'].max())
    
    print('offline test date_received')
    print(off_test[off_test['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_test[off_test['date_received'] != 'null']['date_received'].max())
    # 用券日期范围
    print('offline train date')
    print(off_train[off_train['date'] != 'null']['date'].min())# 非空日期
    print(off_train[off_train['date'] != 'null']['date'].max())
    
    print('online train date')
    print(on_train[on_train['date'] != 'null']['date'].min())# 非空日期
    print(on_train[on_train['date'] != 'null']['date'].max())
    # 训练集与测试集id的重合度
    # user_id
    off_train_user = off_train[['user_id']].copy().drop_duplicates()
    off_test_user = off_test[['user_id']].copy().drop_duplicates()
    on_train_user = on_train[['user_id']].copy().drop_duplicates()
    print('offline训练集用户ID数量')
    print(off_train_user.user_id.count())
    print('online训练集用户ID数量')
    print(on_train_user.user_id.count())
    print('offline测试集用户ID数量')
    print(off_test_user.user_id.count())
    off_train_user['off_train_flag']=1
    off_merge = off_test_user.merge(off_train_user, on='user_id', how="left").reset_index().fillna(0)# 索引,缺失值
    print('offline训练集用户与测试集用户的重复数量')
    print(off_merge['off_train_flag'].sum())
    print('offline训练集用户与测试集重复用户在总测试集用户中的占比')
    print(off_merge['off_train_flag'].sum()/off_test_user['user_id'].count())
    
    on_train_user['on_train_flag']=1
    on_merge = off_test_user.merge(on_train_user, on='user_id', how="left").reset_index().fillna(0)
    print('online训练集用户与测试集用户的重复数量')
    print(on_merge['on_train_flag'].sum())
    print('online训练集用户与测试集重复用户在总测试集用户中的占比')
    print(on_merge['on_train_flag'].sum()/off_test_user['user_id'].count())
    # 
    plt.rcParams['figure.figsize'] = (25.0, 4.0)
    plt.title("Value Distribution", fontsize=24)
    plt.xlabel("Values", fontsize=14)
    plt.ylabel("Counts", fontsize=14)
    plt.tick_params(axis='both', labelsize=14)
    plt.xticks(size='small', rotation=68, fontsize=8)
    plt.plot(off_train['discount_rate'].value_counts(), linewidth=2)
    plt.show()

  • 相关阅读:
    一个进程间同步和通讯的 C# 框架
    C# 程序员最常犯的 10 个错误
    《C#并发编程经典实例》笔记
    C# BackgroundWorker 详解
    C# Excel导入导出
    List实现行转列的通用方案
    C# 开发者最经常犯的 8 个错误
    Intellij IDEA 查找接口实现类的快捷键
    target runtime com.genuitec.runtime.genuitec.jee60 is not defined
    java.io.WinNTFileSystem
  • 原文地址:https://www.cnblogs.com/Cookie-Jing/p/14714870.html
Copyright © 2011-2022 走看看