zoukankan      html  css  js  c++  java
  • 优惠券预测——数据探索1

    import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    from datetime import date
    import datetime as dt
    from scipy import stats
    import warnings
    warnings.filterwarnings("ignore")
    %matplotlib inline
    # 导入CSV文件
    off_train = pd.read_csv('ccf_offline_stage1_train.csv', keep_default_na=False) off_train.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received', 'date'] off_test = pd.read_csv('ccf_offline_stage1_test_revised.csv', keep_default_na=False) off_test.columns = ['user_id', 'merchant_id', 'coupon_id', 'discount_rate', 'distance', 'date_received'] on_train = pd.read_csv('ccf_online_stage1_train.csv', keep_default_na=False) on_train.columns = ['user_id', 'merchant_id', 'action', 'coupon_id', 'discount_rate', 'date_received', 'date']
    off_train.head()
    off_train.info()
    off_test.head()
    off_test.info()
    # 领券日期范围
    print('offline train date_received')
    print(off_train[off_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_train[off_train['date_received'] != 'null']['date_received'].max())
    
    print('online train date_received')
    print(on_train[on_train['date_received'] != 'null']['date_received'].min())# 非空日期
    print(on_train[on_train['date_received'] != 'null']['date_received'].max())
    
    print('offline test date_received')
    print(off_test[off_test['date_received'] != 'null']['date_received'].min())# 非空日期
    print(off_test[off_test['date_received'] != 'null']['date_received'].max())
    # 用券日期范围
    print('offline train date')
    print(off_train[off_train['date'] != 'null']['date'].min())# 非空日期
    print(off_train[off_train['date'] != 'null']['date'].max())
    
    print('online train date')
    print(on_train[on_train['date'] != 'null']['date'].min())# 非空日期
    print(on_train[on_train['date'] != 'null']['date'].max())
    # 训练集与测试集id的重合度
    # user_id
    off_train_user = off_train[['user_id']].copy().drop_duplicates()
    off_test_user = off_test[['user_id']].copy().drop_duplicates()
    on_train_user = on_train[['user_id']].copy().drop_duplicates()
    print('offline训练集用户ID数量')
    print(off_train_user.user_id.count())
    print('online训练集用户ID数量')
    print(on_train_user.user_id.count())
    print('offline测试集用户ID数量')
    print(off_test_user.user_id.count())
    off_train_user['off_train_flag']=1
    off_merge = off_test_user.merge(off_train_user, on='user_id', how="left").reset_index().fillna(0)# 索引,缺失值
    print('offline训练集用户与测试集用户的重复数量')
    print(off_merge['off_train_flag'].sum())
    print('offline训练集用户与测试集重复用户在总测试集用户中的占比')
    print(off_merge['off_train_flag'].sum()/off_test_user['user_id'].count())
    
    on_train_user['on_train_flag']=1
    on_merge = off_test_user.merge(on_train_user, on='user_id', how="left").reset_index().fillna(0)
    print('online训练集用户与测试集用户的重复数量')
    print(on_merge['on_train_flag'].sum())
    print('online训练集用户与测试集重复用户在总测试集用户中的占比')
    print(on_merge['on_train_flag'].sum()/off_test_user['user_id'].count())
    # 
    plt.rcParams['figure.figsize'] = (25.0, 4.0)
    plt.title("Value Distribution", fontsize=24)
    plt.xlabel("Values", fontsize=14)
    plt.ylabel("Counts", fontsize=14)
    plt.tick_params(axis='both', labelsize=14)
    plt.xticks(size='small', rotation=68, fontsize=8)
    plt.plot(off_train['discount_rate'].value_counts(), linewidth=2)
    plt.show()

  • 相关阅读:
    目录部分
    系统部分
    sql自动排序
    金蝶云星空cloud全面串讲视频教程
    c# datagridview在编辑时触发事件,获取输入值
    金蝶cloud 货主、保管者、库存组织这三种关系的
    金蝶cloud bos单据新建复制与继承的关系
    金蝶cloud webapi BAH.BOS.WebAPI.Client,C#示例代码
    金蝶cloud webapi开发相关技术指导源码案例
    金蝶cloud api开发调用
  • 原文地址:https://www.cnblogs.com/Cookie-Jing/p/14714870.html
Copyright © 2011-2022 走看看