zoukankan      html  css  js  c++  java
  • 迁移学习: 利用VGG16进行猫狗大战分类

    下载数据集和导入包

    import sys
    import os
    print(os.getcwd())
    ! wget https://static.leiphone.com/cat_dog.rar
    ! unrar x cat_dog.rar
    
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    import torch
    import torch.nn.functional as F
    import torch.nn as nn
    import torchvision
    from torchvision import models,transforms,datasets
    from skimage import io  
    import time
    import json
    
    
    # 判断是否存在GPU设备
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print('Using gpu: %s ' % torch.cuda.is_available())
    

    由于数据集不是标准的ImageFolder格式的需要自己定义一个DataSet类,继承torch.utils.data.DataSet

    主要实现以下几个函数
    __init__
    __len__
    __getitem__

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    
    vgg_format = transforms.Compose([
                    transforms.ToPILImage(),
                    transforms.CenterCrop(224),
                    transforms.ToTensor(),
                     normalize 
                ])
    
    print(type(vgg_format))
    class Cat_Dog_Data(torch.utils.data.Dataset):   
    
      def __init__(self, root_dir, transform=None):
        self.img_list = os.listdir(root_dir)
        self.root_dir = root_dir       
        self.transform = transform
    
      def __len__(self):        
        return len(self.img_list)
    
      def __getitem__(self, idx):        
        img_name = os.path.join(self.root_dir,                                
        self.img_list[idx])        
        image = io.imread(img_name)
        image = np.array(image)
        label = 0 if self.img_list[idx].split('_')[0]=="cat" else 1
        
        if self.transform:            
          img = self.transform(image)
        return img, label
    

    指定图片的存放路径,并创建DataLoader

    DataLoader是可以多线程批量加载图片的类

    root_dir = './cat_dog'
    data_dir = ['train', 'test', 'val']
    img_dir = {x : os.path.join(root_dir,x) for x in data_dir }
    
    train_dataset = Cat_Dog_Data(                                           
    	root_dir=img_dir['train'],                                           
    	transform = vgg_format)
    
    val_dataset = Cat_Dog_Data(                                           
    	root_dir=img_dir['val'],                                           
    	transform = vgg_format)
    
    loader_train = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=6)
    loader_valid = torch.utils.data.DataLoader(val_dataset, batch_size=5, shuffle=False, num_workers=6)
    

    展示图片

    使用torchvision.utils.make_grid函数
    同时因为Tensor是按照CHW排列的,需要转换成HWC排列才能显示

    inputs_try,labels_try = iter(loader_valid).next()
    def imshow(inp, title=None):
    #   Imshow for Tensor.
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = np.clip(std * inp + mean, 0,1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # pause a bit so that plots are updated
    
    label = ["Cat" if x.item()==0 else "Dog" for x in labels_try]
    imshow(torchvision.utils.make_grid(inputs_try), label)
    

    加载VGG16并修改最后一层的网络结构

    当然是直接用的老师的代码了

    model_vgg = models.vgg16(pretrained=True)
    print(model_vgg)
    
    model_vgg_new = model_vgg;
    
    for param in model_vgg_new.parameters():
        param.requires_grad = False
    model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
    model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)
    
    model_vgg_new = model_vgg_new.to(device)
    
    print(model_vgg_new.classifier)
    

    训练模型

    这部分也是直接用就好了
    尝试了一下Adam和SGD优化器
    SGD大约十轮迭代以后和Adam的准确率差不多,貌似Adam的自适应收敛会更快

    '''
    第一步:创建损失函数和优化器
    
    损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
    它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
    '''
    criterion = nn.NLLLoss()
    
    # 学习率
    lr = 0.001
    
    # 随机梯度下降
    optimizer_vgg = torch.optim.Adam(model_vgg_new.classifier[6].parameters(),lr = lr)
    
    '''
    第二步:训练模型
    '''
    
    def train_model(model,dataloader,size,epochs=1,optimizer=None):
        model.train()
        
        for epoch in range(epochs):
            running_loss = 0.0
            running_corrects = 0
            count = 0
            for inputs,classes in dataloader:
                inputs = inputs.to(device)
                classes = classes.to(device)
                outputs = model(inputs)
                loss = criterion(outputs,classes)           
                optimizer = optimizer
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                _,preds = torch.max(outputs.data,1)
                # statistics
                running_loss += loss.data.item()
                running_corrects += torch.sum(preds == classes.data)
                count += len(inputs)
                print('Training: No. ', count, ' process ... total: ', size)
            epoch_loss = running_loss / size
            epoch_acc = running_corrects.data.item() / size
            print('Loss: {:.4f} Acc: {:.4f}'.format(
                         epoch_loss, epoch_acc))
            
            
    # 模型训练
    train_model(model_vgg_new,loader_train,size=train_dataset.__len__(), epochs=2, 
                optimizer=optimizer_vgg)  
    

    查看验证集上的准确率

    def test_model(model,dataloader,size):
        model.eval()
        predictions = np.zeros(size)
        all_classes = np.zeros(size)
        all_proba = np.zeros((size,2))
        i = 0
        running_loss = 0.0
        running_corrects = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            predictions[i:i+len(classes)] = preds.to('cpu').numpy()
            all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
            all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
            i += len(classes)
            print('Testing: No. ', i, ' process ... total: ', size)        
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                         epoch_loss, epoch_acc))
        return predictions, all_proba, all_classes
      
    predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=val_dataset.__len__
    

    生成一个提交文件

    import pandas as pd
    pred = []
    model_vgg_new.eval()
    # print(model_vgg_new)
    test_img = os.listdir(img_dir['test'])
    
    ans = [0]*len(test_img)
    ansf = open('submission.txt','w')
    for i,img in enumerate(test_img):
      image = vgg_format(io.imread(os.path.join(img_dir['test'],img)))
      image = image.unsqueeze(0)
      image = image.to(device)
      index = int(os.path.splitext(img)[0])
      print(index)
      output = model_vgg_new(image)
      _,preds = torch.max(output.data,1)
      ans[index]=preds.item()
      pred.append(preds.item())
    for i, pred in enumerate(ans):
      print(i, pred, file=ansf, sep=',')
    ansf.close()
    results = pd.Series(pred)
    submission = pd.concat([pd.Series(range(0,2000)),results],axis=1)
    print(submission)
    submission.to_csv(os.path.join('./','submission.csv'),index=False)
    

    上AI研习社交一发

    WOW 起飞
    晚餐加可乐了

    结果分析:

    提升方案

    • 更换主干网络
      VGG是一个多年前的网络了,可以考虑使用ResNet做主干网络

    • 采用数据增强技术 可参考 数据增强(Data Augmentation)
      对现有的训练样本进行平移旋转等,生成规模更大的样本

    • 分析vali样本中的分类错误的样本,看是否有提升空间


      毕竟神经网络理论上可以拟合任意函数,主要还是找一个适合的网络以及充足的合适的训练样本

    Crossea_一条有梦想的咸鱼

  • 相关阅读:
    Redis总结
    设计模式-单例模式
    spring5源码解读
    关于asp.net MVC 中的TryUpdateModel方法
    WebSocket在ASP.NET MVC4中的简单实现 (该文章转自网络,经尝试并未实现,请大神指点。)
    C# 新特性 dynamic的使用及扩展
    C#用反射判断一个类型是否是Nullable同时获取它的根类型(转自网络)
    C#通用类型转换 Convert.ChangeType 转自网络
    浅谈.NET反射机制的性能优化 转自网络 博客园
    浅析大型网站的架构 转自软件中国
  • 原文地址:https://www.cnblogs.com/Crossea/p/13359390.html
Copyright © 2011-2022 走看看