径向基函数是一个取值仅仅依赖于离原点距离的实值函数,也就是Φ(x)=Φ(‖x‖),或者还可以是到任意一点c的距离,c点称为中心点,也就是Φ(x,c)=Φ(‖x-c‖)。任意一个满足Φ(x)=Φ(‖x‖)特性的函数Φ都叫做径向基函数,标准的一般使用欧氏距离(也叫做欧式径向基函数),尽管其他距离函数也是可以的。在神经网络结构中,可以作为全连接层和ReLU层的主要函数。
解决问题
需要使用深度学习解决的问题有以下的特征:
深度不足会出现问题。
人脑具有一个深度结构。
认知过程逐层进行,逐步抽象。
①无监督学习用于每一层网络的pre-train;
②每次用无监督学习只训练一层,将其训练结果作为其高一层的输入;
③用自顶而下的监督算法去调整所有层
a). AutoEncoder
最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重,自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征,在研究中可以发现,如果在原有的特征中加入这些自动学习得到的特征可以大大提高精确度,甚至在分类问题中比目前最好的分类算法效果还要好!这种方法称为AutoEncoder。当然,我们还可以继续加上一些约束条件得到新的Deep Learning方法,如:如果在AutoEncoder的基础上加上L1的Regularity限制(L1主要是约束每一层中的节点中大部分都要为0,只有少数不为0,这就是Sparse名字的来源),我们就可以得到Sparse AutoEncoder方法。
由于输入和输出相同,所以中间层节点的输出值,就代表中间的特征。也就是这个输入的高层抽象特征。
来源:
http://baike.baidu.com/link?url=Rh3o0P84n7tOmoqlI-hhVLoxx3SqIBR6PXG7sLTnucQlweW733Lols7YmX6vvVpvV3x1-0Jbhlw2cXORsajValNOLHv0FPpn-3LKQhG1XjdaB5vhndg2QNvICyKEUogc