zoukankan      html  css  js  c++  java
  • Gym101981D

    2018ACM-ICPC南京现场赛D题-Country Meow

    Problem D. Country Meow
    Input file: standard input
    Output file: standard output
    In the 24th century, there is a country somewhere in the universe, namely Country Meow. Due to advanced technology, people can easily travel in the 3-dimensional space.
    There are N cities in Country Meow. The i-th city is located at (xi, yi, zi) in Cartesian coordinate.
    Due to the increasing threat from Country Woof, the president decided to build a new combatant command, so that troops in different cities can easily communicate. Hence, the Euclidean distance between the combatant command and any city should be minimized.
    Your task is to calculate the minimum Euclidean distance between the combatant command and the farthest city.
    Input
    The first line contains an integer N (1 ≤ N ≤ 100).
    The following N lines describe the i-th city located.Each line contains three integers xi, yi, zi(−100000 ≤ xi, yi, zi ≤ 100000).
    Output
    Print a real number — the minimum Euclidean distance between the combatant command and the farthest city. Your answer is considered correct if its absolute or relative error does not exceed 10−3. Formally, let your answer be a, and the jury’s answer be b. Your answer is considered correct if |a−b| max(1,|b|) ≤ 10−3.
    standard input
    3
    0 0 0
    3 0 0
    0 4 0
    4
    0 0 0
    1 0 0
    0 1 0
    0 0 1
    standard output
    2.500000590252103
    0.816496631812619

    思路:

    题意是最小球覆盖,一定要读懂题。
    好像是计算几何板子题,不过三个三分也是可以过的,模拟退火玄学算法不清楚。

    AC_CODE:

    #include <bits/stdc++.h>
    #define o2(x) (x)*(x)
    using namespace std;
    typedef long long LL;
    const int MXN = 1e5 + 5;
    int n;
    int x[MXN], y[MXN], z[MXN];
    double len(double X, double Y, double Z, int i) {
        return o2(X-x[i])+o2(Y-y[i])+o2(Z-z[i]);
    }
    double exe3(double X, double Y, double Z) {
        double ans = 0;
        for(int i = 1; i <= n; ++i) ans = max(ans, len(X,Y,Z,i));
        return ans;
    }
    double exe2(double X, double Y) {
        double l = -1e6, r = 1e6, midl, midr, ans;
        for(int i = 0; i < 70; ++i) {
            midl = (l+r)/2;
            midr = (midl+r)/2;
            if(exe3(X, Y, midl) <= exe3(X, Y, midr)) {
                r = midr, ans = midl;
            }else {
                l = midl, ans = midr;
            }
        }
        return exe3(X, Y, ans);
    }
    double exe1(double X) {
        double l = -1e6, r = 1e6, midl, midr, ans;
        for(int i = 0; i < 70; ++i) {
            midl = (l+r)/2;
            midr = (midl+r)/2;
            if(exe2(X, midl) <= exe2(X, midr)) {
                r = midr, ans = midl;
            }else {
                l = midl, ans = midr;
            }
        }
        return exe2(X, ans);
    }
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i) scanf("%d%d%d", &x[i], &y[i], &z[i]);
        double l = -1e6, r = 1e6, midl, midr, ans;
        for(int i = 0; i < 70; ++i) {
            midl = (l+r)/2;
            midr = (midl+r)/2;
            if(exe1(midl) <= exe1(midr)) {
                r = midr, ans = midl;
            }else {
                l = midl, ans = midr;
            }
        }
        double tmp = exe1(ans);
        printf("%.9f
    ", sqrt(tmp));
        return 0;
    }
    
  • 相关阅读:
    2017年下半年软考合格标准出炉啦
    练网软考知识点整理-项目配置管理流程
    简练网软考知识点整理-项目招标投标中的法律责任
    简练网软考知识点整理-软件维护类型
    简练网软考知识点整理-软件质量保证及质量评价
    简练网软考知识点整理-项目配置管理配置审计
    简练网软考知识点整理-项目问题日志(Issue Log)
    简练网软考知识点整理-风险应对措施(应急计划、弹回计划和权变措施)
    简练网软考知识点整理-项目组织分解结构OBS
    简练网软考知识点整理-项目配置管理计划
  • 原文地址:https://www.cnblogs.com/Cwolf9/p/9977421.html
Copyright © 2011-2022 走看看