zoukankan      html  css  js  c++  java
  • NOIP模拟 最佳序列

    题意:

    各一个n((le 20000))的序列,定义纯洁序列为长度len满足(L le len le R)的序列,纯洁值为某一纯洁序列的平局值,输出所有纯洁序列中最大平均值。

    分析:

    二分 + 单调队列:二分出平均值mid, 下面来判断该平均值是否符合加大L的要求:

    [mid = frac{sum[i] - sum[p]}{i-p} (i - r + 1 <= p <= i - l + 1) ]

    当mid偏小时:(sum{(a_i - mid)} >= sum{(a_j - mid)} (i - r + 1 <= j <= i - l + 1))
    (min{ sum(a_j - mid) (i - r + 1 <= j <= i - l + 1)} <= sum{a_i - mid})那么就肯定满足了。
    即要求指定区间中的最小值,直接单调队列。(O(nlogn))

    code:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cmath>
    #include<ctime>
    #include<deque>
    using namespace std;
    namespace IO {
        template<typename T>
        inline void read(T &x) {
            T i = 0, f = 1;
            char ch = getchar();
            for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
            if(ch == '-') f = -1, ch = getchar();
            for(; ch >= '0' && ch <= '9'; ch = getchar()) i = (i << 3) + (i << 1) + (ch - '0');
            x = i * f;
        }
        template<typename T>
        inline void wr(T x) {
            if(x < 0) putchar('-'), x = -x;
            if(x > 9) wr(x / 10);
            putchar(x % 10 + '0');
        }
    }using namespace IO;
    
    const int N = 2e4 + 5;
    #define eps 1e-8
    int n, l, r, a[N];
    typedef long long ll;
    double sum[N], ans;
    deque<double> que;
    
    inline bool calc(double mid){
        sum[0] = 0;
        for(int i = 1; i <= n; i++) sum[i] = sum[i - 1] + 1.0 * a[i] - mid;
        que.clear();
    
        for(int i = l; i <= n; i++){
            while(!que.empty() && sum[(int)que.back()] >= sum[i - l]) que.pop_back();
            que.push_back(i - l);
            while(!que.empty() && i - que.front() > r) que.pop_front();
            if(!que.empty() && sum[i] >= sum[(int)que.front()]) return true;
        }
        return false;
    }
    
    int main(){
        freopen("h.in", "r", stdin);
        read(n), read(l), read(r);
        for(int i = 1; i <= n; i++) read(a[i]);
        double L = 0, R = 1e6;
        for(int t = 1; t <= 50; t++){
            double mid = (L + R) / 2;
            if(calc(mid)) L = mid;
            else R = mid;
        }
        printf("%.4f", L);
        return 0;
    }
    
  • 相关阅读:
    洛谷P2762 太空飞行计划问题
    网络流24题 gay题报告
    洛谷P1712 区间
    洛谷P2480 古代猪文
    10.9zuoye
    面向对象类编程,计算分数
    请输入验证码优化版
    面向对象式开发程序
    直接选择排序与反转排序
    随机数产生原理
  • 原文地址:https://www.cnblogs.com/CzYoL/p/7773728.html
Copyright © 2011-2022 走看看