zoukankan      html  css  js  c++  java
  • Luogu 3768 简单的数学题

    莫比乌斯反演 + 杜教筛

    $$sum_{i = 1}^{n}sum_{j = 1}^{n}ijgcd(i, j)$$

    $$= sum_{d = 1}^{n}dsum_{i = 1}^{n}sum_{j = 1}^{n}ij[gcd(i, j) == d]$$

    $$= sum_{d = 1}^{n}d^3sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{n}{d} ight floor}ij[gcd(i, j) == 1]$$

    $$= sum_{d = 1}^{n}d^3sum_{i = 1}^{left lfloor frac{n}{d} ight floor}sum_{j = 1}^{left lfloor frac{n}{d} ight floor}ijsum_{t | i, t | j}mu(t)$$

    $$= sum_{d = 1}^{n}d^3sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu(t)sum_{i = 1}^{left lfloor frac{n}{d} ight floor}i[t | i]sum_{j = 1}^{left lfloor frac{n}{d} ight floor}j[t | j]$$

    $$= sum_{d = 1}^{n}d^3sum_{t = 1}^{left lfloor frac{n}{d} ight floor}mu(t)(tsum_{i = 1}^{left lfloor frac{n}{td} ight floor}i)^2$$

    $$= sum_{d = 1}^{n}d^3sum_{t = 1}^{left lfloor frac{n}{d} ight floor}t^2mu(t)(frac{left lfloor frac{n}{td} ight floor(left lfloor frac{n}{td} ight floor + 1)}{2})^2$$

    记$T = td$,

    $$sum_{T = 1}^{n}(frac{left lfloor frac{n}{T} ight floor(left lfloor frac{n}{T} ight floor + 1)}{2})^2sum_{d | T}d^3mu(frac{T}{d})frac{T^2}{d^2}$$

    $$= sum_{T = 1}^{n}(frac{left lfloor frac{n}{T} ight floor(left lfloor frac{n}{T} ight floor + 1)}{2})^2T^2sum_{d | T}dmu(frac{T}{d})$$

    注意到$sum_{d | n}frac{n}{d}mu(d) = varphi(n)$,

    $$= sum_{T = 1}^{n}(frac{left lfloor frac{n}{T} ight floor(left lfloor frac{n}{T} ight floor + 1)}{2})^2(T^2varphi(T))$$

    记$h(i) = i^2varphi(i)$,

    $$= sum_{T = 1}^{n}(frac{left lfloor frac{n}{T} ight floor(left lfloor frac{n}{T} ight floor + 1)}{2})^2h(T)$$

    前面那部分已经可以分块计算了,现在的主要矛盾就是$h(T)$怎么算。

    考虑杜教筛的套路,我们让$h$函数卷上$g(n) = n^2$,得到

    $$(h * g)(n) = sum_{d | n}d^2varphi(d)(frac{n}{d})^2 = n^2sum_{d | n}varphi(d) = n^3$$

    $$S(n) = sum_{i = 1}^{n}i^3 - sum_{i = 2}^{n}i^2S(left lfloor frac{n}{i} ight floor)$$

    根据小学奥数的知识

    $$sum_{i = 1}^{n}i^3 = (sum_{i = 1}^{n}i)^2 = frac{n^2(n + 1)^2}{4}$$

    $$sum_{i = 1}^{n}i^2 = frac{n(n + 1)(2n + 1)}{6}$$

    然后就可以愉快地杜教筛了。

    并不会算时间复杂度,反正能过

    另外注意这题的$n$有可能大于等于模数$P$,所以我疯狂取模之后效率很低。

    Code:

    // luogu-judger-enable-o2
    #include <cstdio>
    #include <cstring>
    #include <unordered_map>
    using namespace std;
    typedef long long ll;
    
    const int N = 4e6 + 5;
    const int Maxn = 4e6;
    
    int pCnt = 0, pri[N], phi[N];
    ll P, inv2, inv4, inv6, sum[N], h[N];
    bool np[N];
    unordered_map <ll, ll> sH;
    
    template <typename T>
    inline void inc(T &x, T y) {
        x += y;
        if (x >= P) x -= P;
    }
    
    template <typename T>
    inline void sub(T &x, T y) {
        x -= y;
        if (x < 0) x += P; 
    }
    
    inline ll fpow(ll x, ll y) {
        ll res = 1LL;
        for (; y > 0; y >>= 1) {
            if (y & 1) res = res * x % P;
            x = x * x % P;
        }
        return res;
    }
    
    inline void sieve() {
        phi[1] = 1;
        for (int i = 2; i <= Maxn; i++) {
            if (!np[i]) pri[++pCnt] = i, phi[i] = i - 1;
            for (int j = 1; j <= pCnt && i * pri[j] <= Maxn; j++) {
                np[i * pri[j]] = 1;
                if (i % pri[j] == 0) {
                    phi[i * pri[j]] = phi[i] * pri[j];
                    break;
                }
                phi[i * pri[j]] = phi[i] * phi[pri[j]];
            }
        }
        
        for (int i = 1; i <= Maxn; i++) {
            h[i] = 1LL * i * i % P * phi[i] % P;
            inc(sum[i], sum[i - 1]), inc(sum[i], h[i]);
        }
    }
    
    /*inline ll getPhi(ll n) {
        if (n <= 0) return 0;
        if (n <= Maxn) return sum[n];
        if (sPhi[n]) return sPhi[n];
        
        ll res = n * (n + 1) % P * inv2 % P;
        for (ll l = 2, r; l <= n; l = r + 1) {
            r = (n / (n / l));
            sub(res, (r - l + 1) * getPhi(n / l) % P);
        }
        return sPhi[n] = res;
    }   */
    
    inline ll squSum(ll n) {
        if (n <= 0) return 0;
        return n % P * ((n + 1) % P) % P * ((2LL * n % P + 1) % P) % P * inv6 % P;
    }
    
    inline ll squ(ll n) {
        n %= P;
        return n * n % P;
    }
    
    ll getH(ll n) {
        if (n <= 0) return 0LL;
        if (n <= Maxn) return sum[n];
        if (sH[n]) return sH[n];
        
        ll res = squ(n + 1) * squ(n) % P * inv4 % P;
        for (ll l = 2, r; l <= n; l = r + 1) {
            r = (n / (n / l));
            sub(res, (squSum(r) - squSum(l - 1) + P) % P * getH(n / l) % P);
    //        res = (res - (squSum(r) - squSum(l - 1) + P) % P * getH(n / l) % P + P) % P;
        }
        return sH[n] = res;
    }
    
    int main() {
    //    freopen("testdata.in", "r", stdin);
        
        ll n;
        scanf("%lld%lld", &P, &n);
        
        inv2 = fpow(2, P - 2), inv4 = fpow(4, P - 2), inv6 = fpow(6, P - 2);
        sieve();
        
        ll ans = 0;
        for (ll l = 1, r; l <= n; l = r + 1) {
            r = (n / (n / l));
            inc(ans, squ(n / l) * squ(n / l + 1) % P * ((getH(r) - getH(l - 1) + P) % P) % P * inv4 % P);
        }
        
        printf("%lld
    ", ans);
        return 0;
    }
    View Code
  • 相关阅读:
    移动传感器扫描覆盖
    最小生成树
    什么是壳 脱壳篇01
    最小生成树
    最小生成树
    最小生成树
    最小生成树
    最小生成树
    普里姆算法
    普里姆算法
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/10211736.html
Copyright © 2011-2022 走看看