zoukankan      html  css  js  c++  java
  • CF484E Sign on Fence

    主席树 + 二分答案。

    容易想到二分答案转化为判定可行性的问题,假设每一次询问的区间是$[x, y]$,长度为$k$,那么假设当前二分到$mid$,我们把原序列中所有大于等于$mid$的值都记一个$1$,其他的位置记为$0$,那么我们看一看$[x, y]$这个区间中最长连续的$1$的个数是不是超过了$k$。这个最长连续$1$的个数可以用线段树维护,维护的方法就是 【Luogu 2572 [SCOI2010]序列操作】这个题的弱化版。    戳这里

    那这样我们考虑对于每一个不同的$a_i$建立线段树,发现每一棵线段树有很多结点可以从上一个版本过继下来,所以可持久化之后就变成了一个主席树。

    我用的方法是直接把所有的$a_i$离散化,然后用$st$表维护一下每一个区间出现的最大的数和最小的数方便二分。

    写得很冗长。

    时间复杂度$O(qlog^{2}n)$。

    Code:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    
    const int N = 1e5 + 5;
    const int Lg = 20;
    const int inf = 1 << 30;
    
    int n, qn, maxn = 0, a[N];
    int v[N], pos[N], len[N], st[2][N][Lg];
    
    struct Item {
        int val, id;
    } b[N], in[N];
    
    bool cmp(const Item &x, const Item &y) {
        if(x.val != y.val) return x.val < y.val;
        else return x.id < y.id;
    }
    
    inline void read(int &X) {
        X = 0; char ch = 0; int op = 1;
        for(; ch > '9' || ch < '0'; ch = getchar())
            if(ch == '-') op = -1;
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    inline int max(int x, int y) {
        return x > y ? x : y;
    }
    
    inline int max3(int x, int y, int z) {
        return max(max(x, y), z);
    }
    
    inline int min(int x, int y) {
        return x > y ? y : x;
    }
    
    inline void chkMax(int &x, int y) {
        if(y > x) x = y;
    }
    
    inline void discrete() {
        sort(in + 1, in + 1 + n, cmp);
        for(int cnt = 0, i = 1; i <= n; i++) {
            if(in[i].val != in[i - 1].val) ++cnt;
            a[in[i].id] = cnt;
            v[cnt] = in[i].val;
            chkMax(maxn, cnt);
        }
    }
    
    namespace PSegT {
        struct Node {
            int lc, rc, sum, maxSum, lmax, rmax;
            
            inline void init() {
                lc = rc = sum = maxSum = 0;
                lmax = rmax = 0;
            }
            
        } s[N * 80];
        
        int root[N], nodeCnt = 0;
        
        #define mid ((l + r) >> 1)
        #define lc(p) s[p].lc
        #define rc(p) s[p].rc
        #define sum(p) s[p].sum
        #define lmax(p) s[p].lmax
        #define rmax(p) s[p].rmax
        #define maxSum(p) s[p].maxSum
        
        inline void up(int p, int l, int r) {
            if(!p) return;
            maxSum(p) = max3(maxSum(lc(p)), maxSum(rc(p)), lmax(rc(p)) + rmax(lc(p)));
            sum(p) = sum(lc(p)) + sum(rc(p));
            lmax(p) = lmax(lc(p));
            if(sum(lc(p)) == mid - l + 1) chkMax(lmax(p), sum(lc(p)) + lmax(rc(p)));
            rmax(p) = rmax(rc(p));
            if(sum(rc(p)) == r - mid) chkMax(rmax(p), sum(rc(p)) + rmax(lc(p)));
        }
        
        void build(int &p, int l, int r) {
            p = ++nodeCnt;
            if(l == r) {
                sum(p) = lmax(p) = rmax(p) = maxSum(p) = 1;
                return;
            }
            
            build(lc(p), l, mid);
            build(rc(p), mid + 1, r);
            up(p, l, r);
        }
        
        void ins(int &p, int l, int r, int x, int pre) {
            s[p = ++nodeCnt] = s[pre];
            if(l == r) {
                sum(p) = lmax(p) = rmax(p) = maxSum(p) = 0;
                return;
            }
            
            if(x <= mid) ins(lc(p), l, mid, x, lc(pre));
            else ins(rc(p), mid + 1, r, x, rc(pre));
            up(p, l, r);
        }
        
        int go(int p, int l, int r, int x) {
            if(l == x && x == r) return s[p].sum;
            
            if(x <= mid) return go(lc(p), l, mid, x);
            else return go(rc(p), mid + 1, r, x);
        }
        
        int query(int p, int l, int r, int x, int y) {
            if(x <= l && y >= r) return maxSum(p);
            
            int res = 0, lmax = 0, rmax = 0;
            if(x <= mid) lmax = query(lc(p), l, mid, x, y);
            if(y > mid) rmax = query(rc(p), mid + 1, r, x, y);
            if(x <= mid && y > mid) {
                int ln = min(mid - x + 1, rmax(lc(p))), rn = min(y - mid, lmax(rc(p)));
                res = ln + rn;
            }
                    
            return max3(lmax, rmax, res); 
        }
        
        #undef mid
        #undef lc
        #undef rc
        #undef sum
        #undef lmax
        #undef rmax
        #undef maxSum
        
    } using namespace PSegT;
    
    inline bool chk(int x, int y, int k, int mid) {
        int res = query(root[pos[mid]], 1, n, x, y);
        return res >= k;
    }
    
    inline int stQuery(int type, int x, int y) {
        int k = len[y - x + 1];
        if(!type) return max(st[0][x][k], st[0][y - (1 << k) + 1][k]);
        else return min(st[1][x][k], st[1][y - (1 << k) + 1][k]);
    }
    
    inline void solve(int x, int y, int k) {
        int ln = stQuery(1, x, y), rn = stQuery(0, x, y), mid, res;
        for(; ln <= rn; ) {
            mid = (ln + rn) / 2;
            if(chk(x, y, k, mid)) res = mid, ln = mid + 1;
            else rn = mid - 1;
        }
        printf("%d
    ", v[res]);
    }
    
    int main() {
        read(n);
        for(int i = 1; i <= n; i++) {
            read(a[i]);
            in[i].val = a[i], in[i].id = i;
        }
        discrete();
        
    /*    for(int i = 1; i <= n; i++)
            printf("%d ", a[i]);
        printf("
    ");    */
        
        for(int i = 1; i <= n; i++) {
            b[i].id = i, b[i].val = a[i];
            st[0][i][0] = st[1][i][0] = a[i], len[i] = log2(i);
        }
        
        for(int j = 1; j <= 18; j++)
            for(int i = 1; i + (1 << j) - 1 <= n; i++) {
                st[0][i][j] = max(st[0][i][j - 1], st[0][i + (1 << (j - 1))][j - 1]);
                st[1][i][j] = min(st[1][i][j - 1], st[1][i + (1 << (j - 1))][j - 1]);
            }
        
        sort(b + 1, b + 1 + n, cmp);        
        build(root[1], 1, n);
        int ed[N];
        for(int i = 2; i <= n + 1; i++) {
            ins(root[i], 1, n, b[i - 1].id, root[i - 1]);
            if(b[i].val != b[i - 1].val) ed[b[i - 1].val] = i - 1;
        }    
        
    /*    for(int i = 1; i <= maxn; i++)
            printf("%d ", ed[i]);
        printf("
    ");    */
            
        for(int i = 1; i <= maxn; i++) pos[i] = ed[i - 1] + 1;
        
    /*    for(int i = 1; i <= maxn; i++)
            printf("%d ", v[i]);
        printf("
    ");    */
        
    /*    for(int i = 1; i <= maxn; i++)
            printf("%d ", pos[i]);
        printf("
    ");
        
        for(int i = 1; i <= maxn; i++) {
            printf("%d: ", i);
            for(int j = 1; j <= n; j++)
                printf("%d ", go(root[pos[i]], 1, n, j));
            printf("
    ");
        }    */
            
        read(qn);
        for(int x, y, k; qn--; ) {
            read(x), read(y), read(k);
            solve(x, y, k);
        }
        
        return 0;
    }
    View Code
  • 相关阅读:
    python目录操作【os和os.path】
    Zabbix4.0 zabbix 快速监控主机
    Zabbix 4.0 钉钉报警
    MySql:sql99语法的连接查询
    bat脚本中存在多条指令,但只执行到某条指令不继续向下执行的一种解决方法
    基类与接口类中的虚析构函数(virtual destructor)
    TortoiseGit使用指南;
    Rust编译问题Blocking waiting for file lock on package cache
    win10安装visual C++ 6.0,在最后显示安装程序正在更新您的系统,然后就无响应
    从实现装饰者模式中思考C++指针和引用的选择
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/9664612.html
Copyright © 2011-2022 走看看