import torch from torch import nn from torch.utils.tensorboard import SummaryWriter '''https://zhuanlan.zhihu.com/p/242086547''' a = torch.Tensor([[1,2,3], [4,5,6]]) b = torch.Tensor([[7,8,9], [10,11,12]]) c = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]]) print(a.shape) d = torch.cat((a,b), dim=0) print(d) d = torch.cat((a,b), dim=1) print(d) e = torch.softmax(a, dim=0) print(e) e = torch.softmax(a, dim=1) print(e) # for循环计算方式 c = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]]) # shape (2,2,3) m,n,p = c.shape res = torch.zeros((m,n,p)) for i in range(m): for j in range(p): res[i,:,j] = torch.softmax(torch.tensor([c[i,k,j] for k in range(n)]), dim=0) #这里对应最内层的for循环 # 库函数设定轴计算方式 res1 = torch.softmax(c, dim=1) print(res.equal(res1)) # True print(res1) print(res) ''' BatchNorm 和 LayerNorm 是针对数据的不同轴去做norm,假设输入数据的维度是(N,C,H,W), 分别对应batch数,核数,高,宽,BatchNorm 就对应dim=0,LayerNorm 就对应dim=1, 在不考虑移动平均等具体细节问题时,两者在形式上可以统一,只有一个dim参数的差别。 ''' '''Pytorch 的实现(简化版)如下:''' class Norm(nn.Module): def __init__(self, num_features, variance_epsilon=1e-12): super(Norm, self).__init__() self.gamma = nn.Parameter(torch.ones(num_features)) self.beta = nn.Parameter(torch.zeros(num_features)) self.variance_epsilon = variance_epsilon # 一个很小的常数,防止除0 def forward(self, x, dim): u = x.mean(dim, keepdim=True) s = (x - u).pow(2).mean(dim, keepdim=True) x_norm = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.gamma * x_norm + self.beta