zoukankan      html  css  js  c++  java
  • 深度学习中的轴/axis/dim全解

    import torch
    from torch import nn
    from torch.utils.tensorboard import SummaryWriter
    
    '''https://zhuanlan.zhihu.com/p/242086547'''
    
    
    a = torch.Tensor([[1,2,3], [4,5,6]])
    b = torch.Tensor([[7,8,9], [10,11,12]])
    c = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])
    print(a.shape)
    
    
    d = torch.cat((a,b), dim=0)
    print(d)
    d = torch.cat((a,b), dim=1)
    print(d)
    e = torch.softmax(a, dim=0)
    print(e)
    e = torch.softmax(a, dim=1)
    print(e)
    
    
    # for循环计算方式
    c = torch.Tensor([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])   # shape (2,2,3)
    m,n,p = c.shape
    res = torch.zeros((m,n,p))
    for i in range(m):
        for j in range(p):
            res[i,:,j] = torch.softmax(torch.tensor([c[i,k,j] for k in range(n)]), dim=0)  #这里对应最内层的for循环
    # 库函数设定轴计算方式
    res1 = torch.softmax(c, dim=1)
    print(res.equal(res1))      # True
    print(res1)
    print(res)
    
    
    '''
    BatchNorm 和 LayerNorm 是针对数据的不同轴去做norm,假设输入数据的维度是(N,C,H,W),
    分别对应batch数,核数,高,宽,BatchNorm 就对应dim=0,LayerNorm 就对应dim=1,
    在不考虑移动平均等具体细节问题时,两者在形式上可以统一,只有一个dim参数的差别。
    '''
    '''Pytorch 的实现(简化版)如下:'''
    class Norm(nn.Module):
        def __init__(self, num_features, variance_epsilon=1e-12):
            super(Norm, self).__init__()
            self.gamma = nn.Parameter(torch.ones(num_features))
            self.beta = nn.Parameter(torch.zeros(num_features))
            self.variance_epsilon = variance_epsilon    # 一个很小的常数,防止除0
    
        def forward(self, x, dim):
            u = x.mean(dim, keepdim=True)
            s = (x - u).pow(2).mean(dim, keepdim=True)
            x_norm = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.gamma * x_norm + self.beta
  • 相关阅读:
    魔兽70TBC猎人常用宏
    魔兽70TBC猎人宝宝技能汇总
    redis常用概念
    mongodb分片集群开启安全认证
    mongodb集群搭建(分片+副本)
    mongodb 用户权限控制
    greenplum数据迁移
    greenplum资源队列
    GreenPlum 集群常用命令
    COCOS 实现Player玩家控制的左右控制,实现马里奥一样的移动
  • 原文地址:https://www.cnblogs.com/DDBD/p/13920889.html
Copyright © 2011-2022 走看看