zoukankan      html  css  js  c++  java
  • POJ2516 Minimum Cost —— 最小费用最大流

    题目链接:https://vjudge.net/problem/POJ-2516

    Minimum Cost
    Time Limit: 4000MS   Memory Limit: 65536K
    Total Submissions: 17650   Accepted: 6205

    Description

    Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport. 

    It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

    Input

    The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place. 

    Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper. 

    The input is terminated with three "0"s. This test case should not be processed.

    Output

    For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

    Sample Input

    1 3 3   
    1 1 1
    0 1 1
    1 2 2
    1 0 1
    1 2 3
    1 1 1
    2 1 1
    
    1 1 1
    3
    2
    20
    
    0 0 0
    

    Sample Output

    4
    -1
    

    Source

    题意:

    有n个商店,m个仓库,k中商品。每个商店对每种商品都有特定需求量,且每个仓库中,每种商品都有其特定的存量。且已知对于某一种商品G,从仓库A运送一件商品G到商店B的运费。问:能否满足所有商店的供货需求?如果能满足,求出最小总运费?

    题解:

    最小费用最大流问题。可知每一种商品是相互独立的,因此我们可以单独求出每种商品总的最小运费,然后加起来,当然前提条件是能满足需求。

    代码如下:

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <vector>
      6 #include <cmath>
      7 #include <queue>
      8 #include <stack>
      9 #include <map>
     10 #include <string>
     11 #include <set>
     12 using namespace std;
     13 typedef long long LL;
     14 const int INF = 2e9;
     15 const LL LNF = 9e18;
     16 const int mod = 1e9+7;
     17 const int MAXM = 1e4+10;
     18 const int MAXN = 1e2+10;
     19 
     20 struct Edge
     21 {
     22     int to, next, cap, flow, cost;
     23 }edge[MAXM<<1];
     24 int tot, head[MAXN];
     25 int pre[MAXN], dis[MAXN];
     26 bool vis[MAXN];
     27 int N;
     28 
     29 void init(int n)
     30 {
     31     N = n;
     32     tot = 0;
     33     memset(head, -1, sizeof(head));
     34 }
     35 
     36 void add(int u, int v, int cap, int cost)
     37 {
     38     edge[tot].to = v;  edge[tot].cap = cap;  edge[tot].cost = cost;
     39     edge[tot].flow = 0;   edge[tot].next = head[u];   head[u] = tot++;
     40     edge[tot].to = u;   edge[tot].cap = 0;  edge[tot].cost = -cost;
     41     edge[tot].flow = 0; edge[tot].next = head[v];   head[v] = tot++;
     42 }
     43 
     44 bool spfa(int s, int t)
     45 {
     46     queue<int>q;
     47     for(int i = 0; i<N; i++)
     48     {
     49         dis[i] = INF;
     50         vis[i] = false;
     51         pre[i] = -1;
     52     }
     53 
     54     dis[s] = 0;
     55     vis[s] = true;
     56     q.push(s);
     57     while(!q.empty())
     58     {
     59         int u  = q.front();
     60         q.pop();
     61         vis[u] = false;
     62         for(int i = head[u]; i!=-1; i = edge[i].next)
     63         {
     64             int v = edge[i].to;
     65             if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
     66             {
     67                 dis[v] = dis[u]+edge[i].cost;
     68                 pre[v] = i;
     69                 if(!vis[v])
     70                 {
     71                     vis[v] = true;
     72                     q.push(v);
     73                 }
     74             }
     75         }
     76     }
     77     if(pre[t]==-1) return false;
     78     return true;
     79 }
     80 
     81 int minCostMaxFlow(int s, int t, int &cost)
     82 {
     83     int flow = 0;
     84     cost = 0;
     85     while(spfa(s,t))
     86     {
     87         int Min = INF;
     88         for(int i = pre[t]; i!=-1; i = pre[edge[i^1].to])
     89         {
     90             if(Min>edge[i].cap-edge[i].flow)
     91                 Min = edge[i].cap-edge[i].flow;
     92         }
     93         for(int i = pre[t]; i!=-1; i = pre[edge[i^1].to])
     94         {
     95             edge[i].flow += Min;
     96             edge[i^1].flow -= Min;
     97             cost += edge[i].cost*Min;
     98         }
     99         flow += Min;
    100     }
    101     return flow;
    102 }
    103 
    104 int need[55][55], storage[55][55], fee[55][55][55];
    105 int main()
    106 {
    107     int n, m, k;
    108     while(scanf("%d%d%d",&n,&m,&k)&&(n||m||k))
    109     {
    110         for(int i = 1; i<=n; i++)
    111         for(int j = 1; j<=k; j++)
    112             scanf("%d", &need[i][j]);
    113 
    114         for(int i = 1; i<=m; i++)
    115         for(int j = 1; j<=k; j++)
    116             scanf("%d", &storage[i][j]);
    117 
    118         for(int i = 1; i<=k; i++)
    119         for(int j = 1; j<=n; j++)
    120         for(int t = 1; t<=m; t++)
    121             scanf("%d", &fee[i][j][t]);
    122 
    123         int cost = 0;
    124         for(int item = 1; item<=k; item++)
    125         {
    126             int whole = 0;
    127             for(int i = 1; i<=n; i++)
    128                 whole += need[i][item];
    129 
    130             int start = 0, end = n+m+1;
    131             init(n+m+2);
    132             for(int i = 1; i<=m; i++)
    133             {
    134                 add(start, i, storage[i][item], 0);
    135                 for(int j = 1; j<=n; j++)
    136 //                 if(storage[i][item]>=need[j][item])  //不能加此条判断
    137                     add(i, m+j, storage[i][item], fee[item][j][i]);
    138             }
    139 
    140             for(int i = 1; i<=n; i++)
    141                 add(m+i, end, need[i][item], 0);
    142 
    143             int cost_item;
    144             int offered = minCostMaxFlow(start, end, cost_item);
    145             if(offered<whole)
    146             {
    147                 cost = -1;
    148                 break;
    149             }
    150             else cost += cost_item;
    151         }
    152         printf("%d
    ", cost);
    153     }
    154 }
    View Code
  • 相关阅读:
    JDBC连接数据库的四种方式:DriverManager,DataSource,DBCP,C3P0
    下面代码打印的结果?
    当一个线程进入一个对象的synchronized方法A之后,其他线程是否可进入此对象的synchronized方法B?
    线程的sleep()方法和yield()方法有什么区别?
    今天,想说一说明星涉毒
    【译文】为什么用户体验文案在产品设计中如此重要?
    【译文】东京的外国工程师
    浅谈K8S cni和网络方案
    网易云易盾发布多国家多语种内容安全服务,助力中国互联网出海
    如何着手商业数据分析?
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8079064.html
Copyright © 2011-2022 走看看