zoukankan      html  css  js  c++  java
  • LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336

    1336 - Sigma Function
    Time Limit: 2 second(s) Memory Limit: 32 MB

    Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

    Then we can write,

    For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

    Input

    Input starts with an integer T (≤ 100), denoting the number of test cases.

    Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).

    Output

    For each case, print the case number and the result.

    Sample Input

    Output for Sample Input

    4

    3

    10

    100

    1000

    Case 1: 1

    Case 2: 5

    Case 3: 83

    Case 4: 947

    题意:

    求1到n(n<=1e12)内,有多少个数的约数和为偶数。

    题解:

    1.将一个数n进行质因子分解,得到 pi 和 ai,其中pi为第i个质因子,ai为第i个质因子的个数,

    那么这个数的约数和:f(n) = (1+2^1+2^2……2^a1)*(1+3^1+3^2……3^a2)……*(1+pi^1+pi^2……pi^ai)*……

    解释:从每一个括号中挑选一个数出来相乘,就得到一个约数。在根据组合数的思想,总的就得到所有约数的和。

    2.可知:偶数可以是偶数乘以偶数,也可以是奇数乘以偶数;而奇数只能是奇数乘以奇数。所以,统计奇数要比统计偶数方便,所以总体思想就是用总的个数减去约数和为奇数的个数。

    3.那么,要使 f(n) 为奇数,必须满足每个括号中的数之和为奇数。可知,当pi = 2时,括号里的数必定为奇数。因为2的正数次方均为偶数,再加上一个1,就为奇数。所以:

    3.1 当n不含有2这个质因子时:每个括号内ai必须为偶数,当ai为偶数就说明了括号内有 ai+1个奇数相加,和为奇数。因此,当每个质因子的个数ai均为偶数时,n可以表示为 n = x^2,即表明当n为一个平方数时,f(n)为奇数。

    3.2 当n含有2这个质因子时:可知对于2来说,无论它的个数为多少,对应括号里的和都为奇数,那么只要同时满足其他括号里的数之和都为奇数,即满足3.1的要求,那么f(n)为奇数。此时 n = 2*x^2。(注:当n = 2*2*2*x^2时, n = 2*(2*x)^2,即同样满足 2*x^2的通项公式)

    3.3 综上,当 n = x^2 或者 n = 2*x^2时, f(n)为奇数。所以在n之内,有sqrt(n) + sqrt(n/2) 个数的约数和为奇数。 

    代码如下:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 using namespace std;
    13 typedef long long LL;
    14 const int INF = 2e9;
    15 const LL LNF = 9e18;
    16 const int mod = 1e9+7;
    17 const int MAXM = 1e5+10;
    18 const int MAXN = 5e5+10;
    19 
    20 int main()
    21 {
    22     int T, kase = 0;
    23     scanf("%d", &T);
    24     while(T--)
    25     {
    26         LL n;
    27         scanf("%lld",&n);
    28         LL ans = n - (LL)sqrt(n) - (LL)sqrt(n/2);
    29         printf("Case %d: %lld
    ", ++kase,ans);
    30     }
    31 }
    View Code
  • 相关阅读:
    datasnap的监督功能【3】-TCP链接监督功能
    实体服务规则或值更新设置字段锁定性
    设置指定的单据视图
    启动或停止IIS
    SSMS2014清除登录记录
    未授予用户在此计算机上的请求登录类型
    采购合同手动下推采购订单提示没有NAME属性
    审批流消息中无法获取明细字段
    费用申请单反写费用合同提示第2行总金额超出,但是实际未超出
    调试手机端
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/8371056.html
Copyright © 2011-2022 走看看