zoukankan      html  css  js  c++  java
  • LightOJ 1289 LCM from 1 to n

    1289 - LCM from 1 to n

    Given an integer n, you have to find

    lcm(1, 2, 3, ..., n)

    lcm means least common multiple. For example lcm(2, 5, 4) = 20, lcm(3, 9) = 9, lcm(6, 8, 12) = 24.

    Input

    Input starts with an integer T (≤ 10000), denoting the number of test cases.

    Each case starts with a line containing an integer n (2 ≤ n ≤ 108).

    Output

    For each case, print the case number and lcm(1, 2, 3, ..., n). As the result can be very big, print the result modulo 232.

    Sample Input

    Output for Sample Input

    5

    10

    5

    200

    15

    20

    Case 1: 2520

    Case 2: 60

    Case 3: 2300527488

    Case 4: 360360

    Case 5: 232792560

    Solution:

    首先,lcm(1,2,...,n)为2k1*3k2*...*pxkx,pi为小于等于n的质数,piki<=n且pi(ki+1)>n

    所以,先预处理出1e8范围内的质数,及其前缀积.

    设pro[i]为∏p[j](1<=j<=i)

    ans=1;
    for(i=1;i<=31;++i)
    {
      找到p[j]i<=n且p[j+1]i>n;
      ans*=pro[j];
    }

    Code:

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<bitset>
    using namespace std;
    #define uint unsigned int
    #define ull unsigned long long
    const uint MAXN=1e8;
    const uint MAXTOT=5761455;
    const uint MAXPOW=31;
    const uint INF=0xffffffff;
    uint t,CASE;
    bitset<MAXN+10> vis;
    uint p[MAXTOT+10],tot;
    uint pro[MAXTOT+10];
    void GetP()
    {
    	for(uint i=2;i<=MAXN;++i)
    	{
    		if(!vis[i])p[++tot]=i;
    		for(uint j=1;j<=tot&&(ull)p[j]*i<=MAXN;++j)
    		{
    			vis[p[j]*i]=true;
    			if(i%p[j]==0)break;
    		}
    	}
    }
    uint QuickPow(uint x,uint y)
    {
    	ull res=1;
    	while(y--)
    	{
    		res*=x;
    		if(res>INF)return INF;
    	}
    	return res;
    }
    void init()
    {
    	GetP();
    	pro[0]=1;
    	for(uint i=1;i<=tot;++i)pro[i]=pro[i-1]*p[i];
    }
    uint n;
    int main()
    {
    	init();
    	scanf("%u",&t);
    	while(t--)
    	{
    		scanf("%u",&n);
    		uint res=1;
    		for(uint i=1;i<=MAXPOW;++i)
    		{
    			uint left=0,mid,right=MAXTOT,r=0;
    			while(left<=right)
    			{
    				mid=(left+right)>>1;
    				if(QuickPow(p[mid],i)<=n)
    				{
    					r=mid;
    					left=mid+1;
    				}
    				else right=mid-1;
    			}
    			res*=pro[r];
    		}
    		printf("Case %d: %u
    ",++CASE,res);
    	}
    	return 0;
    }
    
  • 相关阅读:
    memory consistency
    网页基础
    ECC
    RSA
    argparse模块
    009-MySQL循环while、repeat、loop使用
    001-mac搭建Python开发环境、Anaconda、zsh兼容
    013-在 Shell 脚本中调用另一个 Shell 脚本的三种方式
    012-Shell 提示确认(Y / N,YES / NO)
    014-docker-终端获取 docker 容器(container)的 ip 地址
  • 原文地址:https://www.cnblogs.com/DOlaBMOon/p/7324846.html
Copyright © 2011-2022 走看看