zoukankan      html  css  js  c++  java
  • HDOJ5119 Happy Matt Friends(状压dp) ——2014北京现场赛H题

    Problem Description
    Matt has N friends. They are playing a game together.

    Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins.

    Matt wants to know the number of ways to win.
     

    Input
    The first line contains only one integer T , which indicates the number of test cases.

    For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 106).

    In the second line, there are N integers ki (0 ≤ ki ≤ 106), indicating the i-th friend’s magic number.
     

    Output
    For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
     

    Sample Input
    2 3 2 1 2 3 3 3 1 2 3
     

    Sample Output
    Case #1: 4 Case #2: 2
    Hint
    In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4.

    题意:给n个数,再给一个m,问有多少种方案,从这n个数中选出若干个(可以是0个),他们的异或值大于等于m。

     

    d[i][j]表示前i个人异或状态为j的方案数。

    则 d[i][j] = d[i-1][j] + d[i-1][j^a[i]]

     

    我把0拿出来单独处理了,有一个0答案就乘一个2。

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    #define rep(i,f,t) for(int i = (f), _end = (t); i <= _end; ++i)
    #define debug(x) cout<<"debug  "<<x<<endl;
    typedef long long int64;
    int64 d[2][1<<21];
    
    int n,m;
    int a[50];
    int zero;
    int64 pow(int x){
        return (int64)1<<x;
    }
    int64 solve(){
        if(m == 0)return pow(zero+n);
        if(n == 0)return 0;
        int64 *pre = d[0], *cur = d[1];
        pre[0] = pre[a[1]] = 1;
        rep(i,2,n){
            memset(cur,0,sizeof(d[0]));
            rep(j,0,1<<20){
                cur[j] += pre[j^a[i]] + pre[j];
            }
            swap(cur,pre);
        }
        swap(cur,pre);
        int64 ans = 0;
        rep(i,m,1<<20)ans += cur[i];
        return ans<<zero;
    }
    int main(){
        int T;
        scanf("%d",&T);
        int cas = 0;
        while(T--){
            memset(d,0,sizeof(d));
            scanf("%d%d",&n,&m);
            zero = 0;
            for(int i = 1; i <= n; ++i){
                scanf("%d",&a[i]);
                if(a[i] == 0){
                    ++zero;
                    --i;--n;
                }
            }
            int64 ans = solve();
            printf("Case #%d: %I64d
    ",++cas,ans);
        }
        return 0;
    }
    



    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    哈希表及其应用分析
    程序员常用的查找算法
    程序猿必备排序算法及其时间复杂度分析
    递归和回溯求解8皇后问题
    链表种类及其常用操作
    为什么要使用稀疏矩阵??
    微服务项目持续集成部署流程简介
    微服务项目的docker自动化部署流程
    (高考标准分)数据拟合==>多项式方程==>excel公式算成绩(标准分)
    awk用名称对应关系批量重命名
  • 原文地址:https://www.cnblogs.com/DSChan/p/4862004.html
Copyright © 2011-2022 走看看