zoukankan      html  css  js  c++  java
  • P4170 [CQOI2007]涂色

    题目描述

    假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。

    每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。

    用尽量少的涂色次数达到目标。

    输入格式

    输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。

    说明/提示

    40%的数据满足:1<=n<=10

    100%的数据满足:1<=n<=50

    解析

    水题,秒切。其实还是蛮简单的一道区间dp。

    容易想到一个小的局部贪心,就是每次我们涂颜色时,最好选择下面这样的,涂在一段已经有颜色的区间,这样就可以保证一个性质:每次操作使得多出来的色块最多。像下面这种涂法一次至多满足三个区间的要求。还有一个似乎不太有用的性质:涂色次数至多为(n)次。

    img

    而下面这种情况,每次至多只能满足两个区间的要求。

    img

    所以我们每次都选择第一种方案来涂颜色,那显而易见这就是道区间dp了。

    (dp[l][r])表示区间(lsim r)完全满足要求,所需的最少涂色次数。显然我们可以得出状态转移方程:

    [dp[l][r]=min_{l<=k<r}(dp[l][k]+dp[k+1][r]) ]

    初始化:初始化数组为1,即每个位置刷一遍。

    这是一个简单的区间dp结论,由于两个子区间一定是完全满足要求的,我们直接取最优合并方案合并就行。

    然而仅仅这样写不是最优的,你甚至连样例都过不了。

    我们思考一下,显然按照上面那种转移法,我们还是把每个位置都算了一遍,而一次涂色是有可能涂一段区间的(废话。考虑到如果某一区间的两端点要求颜色是相同的,对于最优解,那么实际上一定有某一次涂了(lsim r)这段区间,而我们并不用管其间的区间是怎么个涂法,我们只用知道其间的区间是之后涂的就行了。

    因此有转移:

    [dp[l][r]=min(dp[l+1][r],dp[l][r-1]),c_l==c_r ]

    其中(c)为该点颜色。

    参考代码

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<ctime>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<set>
    #include<map>
    #define INF 0x3f3f3f3f
    using namespace std;
    char c[60];
    int n,dp[60][60];
    int main()
    {
    	cin>>c+1;
    	n=strlen(c+1);
    	for(int i=1;i<=n;++i)
    	 for(int j=1;j<=n;++j) dp[i][j]=1;
    	for(int len=2;len<=n;++len)
    	 for(int l=1;l<=n-len+1;++l){
    	 	int r=l+len-1,tmp=INF;
    	 	if(c[l]==c[r]) dp[l][r]=min(dp[l+1][r],dp[l][r-1]);
    	 	else {
    	 		for(int k=l;k<r;++k)
    	 			if(tmp>dp[l][k]+dp[k+1][r]) tmp=dp[l][k]+dp[k+1][r];
    	 		dp[l][r]=tmp;
    		 }
    	 }
    	printf("%d
    ",dp[1][n]);
    	return 0;
    }
    
  • 相关阅读:
    Contains Duplicate III
    Contains Duplicate
    bitmap
    机器人的运动范围
    矩阵中的路径
    不要62
    牛顿迭代法求方程的根
    统计C语言合法字符
    迭代法求平方根
    欧几里德算法(求两个正整数的最大公约数)
  • 原文地址:https://www.cnblogs.com/DarkValkyrie/p/11285707.html
Copyright © 2011-2022 走看看