zoukankan      html  css  js  c++  java
  • NOI2.6 8782: 乘积最大

    描述

    今年是国际数学联盟确定的“2000——世界数学年”,又恰逢我国著名数学家华罗庚先生诞辰90周年。在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加。活动中,主持人给所有参加活动的选手出了这样一道题目:

    设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大。

    同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子:

    有一个数字串:312,当N=3,K=1时会有以下两种分法:

    1)  3*12=36

    2)  31*2=62

    这时,符合题目要求的结果是:31*2=62

    现在,请你帮助你的好朋友XZ设计一个程序,求得正确的答案。

    输入 程序的输入共有两行:
    第一行共有2个自然数N,K(6≤N≤40,1≤K≤6)
    第二行是一个长度为N的数字串。
    输出 输出所求得的最大乘积(一个自然数)。(保证最终答案不超过int范围) 样例输入
    4 2
    1231
    
    样例输出
    62

    这道题无论是数据预处理,还是添加乘号,都有一定的难度,后来在老师的讲解下,找到了如下递推式:


    f  [  n(已经访问了多少位)]   [  k(用了多少个乘号)]  =  MAX(f [ 1 ] [ k - 1 ] * g [ 1 ] [ j ]  ……  f [ i ] [ k - 1 ] * g [ i ] [ j ](i,j 是指第 i 位到第 j 位的数))


    最后再输出 f [ n ] [ k ] 就行啦 ~(≧▽≦)/~


    AC代码如下:


    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    using namespace std;
    int a[50][8];
    int n,k;
    char c[50];
    int g(int l,int r)
    {
    	int i,p=0;
    	for(i=l;i<=r;i++)
    		p+=(c[i]-48)*pow(10,r-i);
    	return p;
    }
    int main()
    {
    	int i,j,o;
    	scanf("%d%d%s",&n,&k,c+1);
    	if(k==0)
    	{
    		printf("%s",c+1);
    		return 0;
    	}
    	for(i=1;i<=n-k;i++)
    		a[i][1]=g(1,i);
    	for(i=2;i<=k;i++)
    		for(j=i;j<=n-k+i-1;j++)
    			for(o=i-1;o<j;o++)
    				a[j][i]=max(a[j][i],a[o][i-1]*g(o+1,j));
    	for(i=0;i<n;i++)
    		a[n][k]=max(a[n][k],a[i][k]*g(i+1,n));
    	printf("%d",a[n][k]);
    }

  • 相关阅读:
    13-02 Java 数组高级算法,Arrays类
    从0移植uboot (二) _uboot启动流程分析
    Linux input子系统编程、分析与模板
    跟着内核学框架-从misc子系统到3+2+1设备识别驱动框架
    Linux驱动技术(八) _并发控制技术
    Linux驱动技术(七) _内核定时器与延迟工作
    Linux驱动技术(六) _内核中断
    Linux驱动技术(五) _设备阻塞/非阻塞读写
    Linux驱动技术(四) _异步通知技术
    Linux驱动技术(三) _DMA编程
  • 原文地址:https://www.cnblogs.com/Darknesses/p/12002575.html
Copyright © 2011-2022 走看看