zoukankan      html  css  js  c++  java
  • MapReduce实战(七)GroupingComparator

    需求:

    Order_0000001,Pdt_01,222.8
    Order_0000001,Pdt_05,25.8
    Order_0000002,Pdt_05,325.8
    Order_0000002,Pdt_03,522.8
    Order_0000002,Pdt_04,122.4
    Order_0000003,Pdt_01,222.8

    按照订单的编号分组,计算出每组的商品价格最大值。

    分析:

    我们可以把订单编号当做key,然后按照在reduce端去找出每组的最大值。在这里,我想介绍另外一种方法,顺便介绍GroupingComparator。

    我们可以自定义一个类型,然后通过GroupingComparator来让其被看成一组(到达reduce端),如果我们对类型进行从大到小的排序,根据MapReduce的规则,同一组的内容到达reduce端,是取第一个内容的key作为reduce的key的,我们不妨利用这个规则,写一个OrderBean的类型,只要让其orderid相同,就被分到同一组,这样一来,到达reduce时,相同id的所有bean已经被看成一组,且金额最大的那个一排在第一位,就是我们想要的结果。

    代码:

    OrderBean.java:

    package com.darrenchan.mr.groupingcomparator;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.DoubleWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.io.WritableComparable;
    
    public class OrderBean implements WritableComparable<OrderBean>{
    
        private Text itemid;
        private DoubleWritable amount;
    
        public OrderBean() {
        }
    
        public OrderBean(Text itemid, DoubleWritable amount) {
            set(itemid, amount);
        }
    
        public void set(Text itemid, DoubleWritable amount) {
            this.itemid = itemid;
            this.amount = amount;
        }
    
        public Text getItemid() {
            return itemid;
        }
    
        public DoubleWritable getAmount() {
            return amount;
        }
    
        @Override
        public int compareTo(OrderBean o) {
    //        int cmp = this.itemid.compareTo(o.getItemid());
    //        if (cmp == 0) {
            int    cmp = -this.amount.compareTo(o.getAmount());
    //        }
            return cmp;
        }
    
        @Override
        public void write(DataOutput out) throws IOException {
            out.writeUTF(itemid.toString());
            out.writeDouble(amount.get());
        }
    
        @Override
        public void readFields(DataInput in) throws IOException {
            String readUTF = in.readUTF();
            double readDouble = in.readDouble();
            
            this.itemid = new Text(readUTF);
            this.amount= new DoubleWritable(readDouble);
        }
    
    
        @Override
        public String toString() {
            return itemid.toString() + "	" + amount.get();
        }
    
    }

    ItemidGroupingComparator.java:

    package com.darrenchan.mr.groupingcomparator;
    
    import org.apache.hadoop.io.WritableComparable;
    import org.apache.hadoop.io.WritableComparator;
    
    /**
     * 利用reduce端的GroupingComparator来实现将一组bean看成相同的key
     *
     */
    public class ItemidGroupingComparator extends WritableComparator {
    
        //传入作为key的bean的class类型,以及制定需要让框架做反射获取实例对象
        protected ItemidGroupingComparator() {
            super(OrderBean.class, true);
        }
    
        @Override
        public int compare(WritableComparable a, WritableComparable b) {
            OrderBean abean = (OrderBean) a;
            OrderBean bbean = (OrderBean) b;
            
            //比较两个bean时,指定只比较bean中的orderid
            return abean.getItemid().compareTo(bbean.getItemid());
        }
    
    }

    ItemIdPartitioner.java:

    package com.darrenchan.mr.groupingcomparator;
    
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.mapreduce.Partitioner;
    
    
    public class ItemIdPartitioner extends Partitioner<OrderBean, NullWritable>{
    
        @Override
        public int getPartition(OrderBean bean, NullWritable value, int numReduceTasks) {
            //相同id的订单bean,会发往相同的partition
            //而且,产生的分区数,是会跟用户设置的reduce task数保持一致
            return (bean.getItemid().hashCode() & Integer.MAX_VALUE) % numReduceTasks;
            
        }
    
    }

    SecondarySort.java:

    package com.darrenchan.mr.groupingcomparator;
    
    import java.io.IOException;
    
    import org.apache.commons.lang.StringUtils;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.DoubleWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.NullWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import com.sun.xml.bind.v2.schemagen.xmlschema.List;
    
    /**
     * 
     */
    public class SecondarySort {
        
        static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
            
            OrderBean bean = new OrderBean();
            
            @Override
            protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    
                String line = value.toString();
                String[] fields = StringUtils.split(line, ",");
                
                bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[2])));
                
                context.write(bean, NullWritable.get());
                
            }
            
        }
        
        static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{
            
            //到达reduce时,相同id的所有bean已经被看成一组,且金额最大的那个一排在第一位
            @Override
            protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
                context.write(key, NullWritable.get());
            }
        }
        
        
        public static void main(String[] args) throws Exception {
            
            Configuration conf = new Configuration();
            Job job = Job.getInstance(conf);
            
            job.setJarByClass(SecondarySort.class);
            
            job.setMapperClass(SecondarySortMapper.class);
            job.setReducerClass(SecondarySortReducer.class);
            
            
            job.setOutputKeyClass(OrderBean.class);
            job.setOutputValueClass(NullWritable.class);
            
            FileInputFormat.setInputPaths(job, new Path("/grouping/srcdata"));
            FileOutputFormat.setOutputPath(job, new Path("/grouping/output"));
            
            //在此设置自定义的Groupingcomparator类 
            job.setGroupingComparatorClass(ItemidGroupingComparator.class);
            //在此设置自定义的partitioner类
            job.setPartitionerClass(ItemIdPartitioner.class);
            
            job.setNumReduceTasks(3);
            
            job.waitForCompletion(true);
            
        }
    
    }

    运行结果:

  • 相关阅读:
    HDU 1247
    [转载]亲密接触VC6.0编译器
    [转载]你该学什么程序语言
    ACE学习2009116
    新东方英语学习二
    电脑族吃什么比较好
    爱默生生活的准则
    成大事必备9种能力9种手段9种心态
    [转载]句柄和指针
    关于WM_CREATE消息
  • 原文地址:https://www.cnblogs.com/DarrenChan/p/6773277.html
Copyright © 2011-2022 走看看