zoukankan      html  css  js  c++  java
  • 高分辨率图像建筑物提取数据集制作

    1. 目录结构

      /dataset/
      	xxxx.tif  # 原始图像
      	image-3000
      		0.tif # 切割后的tif
      		1.tif
      		........
      		xxx_0.json # 生成的json文件也放在该文件夹下
      		xxx_1.json
      		.......
      		xxx_0_json # 调用labelme_json_to_dataset 0.json 生成的0_json文件夹
      			img.png # 原始图片的png格式
      			info.yaml
      			label.png # 标签图片
      			label_names.txt 
      			label_viz.png
      		xxx_1_json
      		.......
      		0.png  # 将json文件夹中的label.png 提取出来
      		1.png 
      		.......
      		label_0.tif # 将上边的png标签文件转换为tif格式
      

    2. 收集数据,高分辨率图像

      1. 无人机数据,航空数据等
    3. 图像切割,像素大小该为多少?

      1. 本数据集平均像素大小(40000*50000) tif格式,LZW压缩方式压缩

      2. 要考虑计算机显卡,目标建筑无尽量不被切割等问题,本利使用3000*3000

        # data:2020-01-04
        # user:dean
        # desc:图像切割脚本
        import tifffile as tiff  # 也可使用pillow或opencv 但若图片过大时可能会出问题
        import os
        width = 1500*2   # 切割图像大小
        height = 1500*2  # 切割图像大小
        home = "/media/dean/Document/AI_dataset/DOM/"
        file_name = "裴庄村51-dom"
        image_dir = os.path.join(home,file_name)
        image = os.path.join(image_dir,file_name+".tif")
        target_dir = os.path.join(image_dir,"image-"+str(width))  # 切割后图片存储位置
        if not os.path.exists(target_dir):
            os.mkdir(target_dir)
        img = tiff.imread(image)  # 导入图片
        print("导入图片完成",img.shape) # 原始图片大小
        pic_width = img.shape[1]
        pic_height = img.shape[0]
        row_num = pic_width//width  # 纵向切割数量
        col_num = pic_height // height  # 横向切割数量
        print("开始进行切割,可切割总数为{}".format(col_num*row_num))
        for j in range(col_num):
            for i in range(row_num):
                num = j * row_num + i
                print("正在进行第{}张切割".format(num + 1))
                row = i * width
                row_end = row + width
                col = j * height
                col_end = col + height
                # print(col,col_end,row,row_end)
                cropped = img[col:col_end,row:row_end]
                name = "{}_{}.tif".format(file_name,num)
                image_path = os.path.join(target_dir,name)
                tiff.imsave(image_path, cropped)
        
    4. 标注工具 labelme

      1. 使用label标注每张图片

        pip install labelme  # 安装labelme
        
      2. 每张图片标注后会生成对应name.json文件

        labelme_json_to_dataset xxx.json 
        

        # data:2020-01-04
        # user:dean
        # desc:批量将json文件转为 label
        import os
        dir = r"I:人工智能数据DOM裴庄村51-domimage-3000"
        files = [os.path.join(dir,file) for file in os.listdir(dir) if file.endswith(".json")]
        for file in files:
            cmd = "labelme_json_to_dataset {}".format(file)
            print(cmd)
            os.system(cmd)
        
      3. 将所有的json/label.png 提取到统一文件夹

        # data:2020-01-04
        # user:dean
        # desc:将label文件夹中的laebl提取出来
        import tifffile as tiff
        from PIL import Image
        import os
        target_dir = r"/media/dean/Document/AI_dataset/DOM/裴庄村51-dom/image-3000"  # json_label 所在的文件夹
        files = [os.path.join(target_dir,file) for file in os.listdir(target_dir)]
        for i in files:
            if os.path.isdir(i):
                lables = os.listdir(i)
                for file in lables:
                    if file == "label.png":
                        image_path = os.path.join(i, "label.png")
                        imgae = Image.open(image_path)
                        parent_dir_name = os.path.basename(os.path.dirname(image_path))
                        new_name = "{}.png".format(parent_dir_name.split("_")[1])
                        imgae.save(os.path.join(target_dir,new_name))
                        print("第{}个文件夹".format(i))
                        break;
        
      4. 将所有的label.png转换为tif格式 并转换为单通道黑白照片

        # coding:utf-8
        # file: change_format.py
        # author: Dean
        # contact: 1028968939@qq.com
        # time: 2020/1/4 20:41
        # desc: 将png 标签转化为单通道 黑白标签 并转化为tif
        import os
        from PIL import Image
        threshold = 0
        table = []
        for i in range(256):
            if i > threshold:
                table.append(255)
            else:
                table.append(0)
        target_dir = r"/media/dean/Document/AI_dataset/DOM/裴庄村51-dom/image-3000"
        files = [os.path.join(target_dir,file) for file in os.listdir(target_dir) if file.endswith(".png")]
        for file in files:
            image_file_name = os.path.basename(file)
            num = image_file_name.split(".")[0]
            image_file = Image.open(file)  # open colour image
            # image_file = image_file.convert('L') # convert image to black and white
            image_file = image_file.point(table, '1')
            new_file = os.path.join(target_dir,"{}.tif".format(num))
            image_file.save(new_file)
            print(new_file)
        
      5. 结束(根据需要提取相应数据即可)

  • 相关阅读:
    Uva 10719 Quotient Polynomial
    UVa 11044 Searching for Nessy
    Uva 10790 How Many Points of Intersection?
    Uva 550 Multiplying by Rotation
    Uva 10916 Factstone Benchmark
    Uva 10177 (2/3/4)D Sqr/Rects/Cubes/Boxes?
    Uva 591 Box of Bricks
    Uva 621 Secret Research
    Uva 10499 The Land of Justice
    Uva 10014 Simple calculations
  • 原文地址:https://www.cnblogs.com/Dean0731/p/12150524.html
Copyright © 2011-2022 走看看