zoukankan      html  css  js  c++  java
  • python 之 Multiprocessing 多进程

    参考视频:莫烦python https://mofanpy.com/tutorials/python-basic/multiprocessing/why/

    1.创建进程

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    import threading as td
    
    
    def job(a,b):
        print('hhhh')
     
        
    if __name__=="__main__":
        #t1 = td.Thread(target=job,args=(1,2))
        p1 = mp.Process(target=job,args=(1,2))
    
        p1.start()
        p1.join()
        
        #t1.start()
        #t1.join()
        

    2. queue 进程输出

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    import threading as td
    
    
    def job(q):
        res = 0
        for i in range(10):
            res += i+i**2+i**3
        q.put(res)#queue
        
     
        
    if __name__=="__main__":
        q = mp.Queue()
        p1 = mp.Process(target=job,args=(q,))
        p2 = mp.Process(target=job,args=(q,))
    
        p1.start()
        p2.start()
        p1.join()
        p2.join()
        
        res1 = q.get()
        res2 = q.get()
        print("res1",res1)
        print("res2",res1)

    res1 2355
    res2 2355

    3. 多线程和多进程效率对比

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    import threading as td
    import time
    from queue import Queue
    
    def job(q):
        res = 0
        for i in range(10000000):
            res += i+i**2+i**3
        q.put(res)#queue
    
    def multcore():
        q = mp.Queue()
        p1 = mp.Process(target=job,args=(q,))
        p2 = mp.Process(target=job,args=(q,))
    
        p1.start()
        p2.start()
        p1.join()
        p2.join()
        
        res1 = q.get()
        res2 = q.get()
        print("multiprocess:",res1+res2) 
        
    def multicore():
        q = Queue()
        t1 = td.Thread(target=job,args=(q,))
        t2 = td.Thread(target=job,args=(q,))
    
        t1.start()
        t2.start()
        t1.join()
        t2.join()
        
        res1 = q.get()
        res2 = q.get()
        print("multithread:",res1+res2)  
     
    def normal():
        res = 0
        for _ in range(2):
            for i in range(10000000):
                res += i+i**2+i**3
        print("normal:",res)
     
    if __name__=="__main__":
        st = time.time()
        normal()
        st1 = time.time()
        print('normal time:', st1 - st)
        multicore()
        st2 = time.time()
        print('multithread time:', st2 - st1)
        multicore()
        print('multicore time:', time.time() - st2)

    normal: 4999999666666716666660000000
    normal time: 13.963502645492554
    multithread: 4999999666666716666660000000
    multithread time: 14.728559017181396
    multithread: 4999999666666716666660000000
    multicore time: 13.920192003250122

    4.进程池 Pool 

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    
    def job(x):
        return x*x
    
    def multicore():
        pool = mp.Pool(processes=12) # 用12个核,默认所有核
        res = pool.map(job,range(100000000))
        print(res)
    
    if __name__ == "__main__":
        multicore()

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    
    def job(x):
        return x*x
    
    def multicore():
        pool = mp.Pool() 
        
        # 一个进程
        res = pool.apply_async(job,(2,)) #一次只能再一个进程中计算一个结果
        print(res.get())
        
        # 很多进程
        multi_res = [pool.apply_async(job,(i,)) for i in range (10)]
        print([res.get() for res in multi_res])
    
    if __name__ == "__main__":
        multicore()

    4
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

    4. 共享内存

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    
    
    value = mp.Value('d',1) # i 表示int, d 表示 浮点 ...
    array = mp.Array('i',[1,2,3]) #只能是一维的

    5. 锁 Lock

    如果没有锁,那么多个进程可能会抢占共享内存中的变量

    没有加 lock

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    import time
    
    def job(v,num):
        for _ in range(10):
            time.sleep(0.1)
            v.value += num
            print(v.value)
    
    
    def multicore():
        v = mp.Value('i',0)
        p1 = mp.Process(target=job,args=(v,1))
        p2 = mp.Process(target=job,args=(v,3))
        p1.start()
        p2.start()
        p1.join()
        p2.join()
        
    if __name__ == "__main__":
        multicore()
    
        

    加了 lock

    # -*- coding: utf-8 -*-
    
    import multiprocessing as mp
    import time
    
    def job(v,num,l):
        l.acquire()
        for _ in range(10):
            time.sleep(0.1)
            v.value += num
            print(v.value)
        l.release()
    
    def multicore():
        l = mp.Lock()
        v = mp.Value('i',0)
        p1 = mp.Process(target=job,args=(v,1,l))
        p2 = mp.Process(target=job,args=(v,3,l))
        p1.start()
        p2.start()
        p1.join()
        p2.join()
        
    if __name__ == "__main__":
        multicore()

    1
    4
    5
    8
    9
    12
    13
    16
    17
    20
    21
    24
    25
    28
    29
    32
    33
    36
    37
    40

  • 相关阅读:
    中文编码问题
    TCP网络参数优化
    I/O的整体介绍
    TCP/IP
    Java序列化技术
    WEB请求过程(http解析,浏览器缓存机制,域名解析,cdn分发)
    λ(lambda)表达式
    HeapByteBuffer和DirectByteBuffer以及回收DirectByteBuffer
    锁的优化和注意事项
    java的NIO和AIO
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/15192808.html
Copyright © 2011-2022 走看看