zoukankan      html  css  js  c++  java
  • Computability 2: Gödel Number

      A set $X$ is effectively denumerable iff there is a bijection $f:X ightarrowmathbb{N}$ such that both $f$ and $f^{-1}$ are effectively computable functions.

      Theorem. The set of the URM instructions is effectively denumerable.

      To see this, we should define the following functions:

      (1) Bijection $pi:mathbb{N} imesmathbb{N} ightarrowmathbb{N}$ is defined by

              $pi(m,n) = 2^m(2n+1)-1$

      (2) Bijection $zeta: mathbb{N}^+ imesmathbb{N}^+ imesmathbb{N}^+ ightarrowmathbb{N}$ is defined by

              $zeta(m,n,q)=pi(pi(m-1,n-1),q-1)$

      (3) Bijection $ au:igcup_{k>0}mathbb{N}^k ightarrowmathbb{N}$ is defined by

              $ au(a_1,...,a_k)=2^{a_1}+2^{a_1+a_2+1}+2^{a_1+a_2+a_3+2}+...+2^{a_1+a_2+...+a_k+k-1}-1$

      Then we can construct a bijection β from URM instructions to natural numbers:

              

      Hence, the URM instruction set is effectively denumerable.

      Theorem. The set of URM programs is effectively denumerable since we can construct the following bijection:

                $gamma(P)= au(eta(I_1),...,eta(I_s))$,

    where $P = I_1 I_2, ..., I_s$, and this is also known as the Gödel Number of a program.

      Theorem. The set of all n-ary computable functions is denumerable since we can construct an enumeration of those functions without repetitions.

      Theorem. The set of computable functions is denumerable since it is the union of the sets of n-ary computable functions for all $ninmathbb{N}^+$ and hence its bijection to $mathbb{N}$ can be constructed by using function $ au$.

      Moreover, we can construct a total unary function that is not computable by using Cantor's Diagonal Method decribed in Set Theory.

            $f(n)simeq egin{cases}phi_n(n)+1 & ext{if }phi_n(n) ext{ is defined }\ uparrow & ext{ otherwise }end{cases}$

               

      The s-m-n Theorem:  for $m, n in mathbb{N}^+$, there is a total computable (m+1)-ary function $s_n^m(e,vec{x})$ such that $phi_e^{m+n}(vec{x},vec{y})simeqphi_{s_n^m(e,vec{x})}^n(vec{y})$.

    References:

      1. Cutland, Nigel. Computability: an introduction to recursive function theory[M]. Cambridge: Cambridge University Press, 1980

  • 相关阅读:
    SDN组网相关解决方案
    Linux C中结构体初始化
    lambda函数、lambda表达式
    流量工程 traffic engineering (TE)
    BGP路由协议详解(完整篇)
    Overlay network 覆盖网络
    覆盖路由
    重叠(Overlapping) NAT
    Multiprotocol Label Switching (MPLS)
    MPLS
  • 原文地址:https://www.cnblogs.com/DevinZ/p/4418442.html
Copyright © 2011-2022 走看看