zoukankan      html  css  js  c++  java
  • Computability 2: Gödel Number

      A set $X$ is effectively denumerable iff there is a bijection $f:X ightarrowmathbb{N}$ such that both $f$ and $f^{-1}$ are effectively computable functions.

      Theorem. The set of the URM instructions is effectively denumerable.

      To see this, we should define the following functions:

      (1) Bijection $pi:mathbb{N} imesmathbb{N} ightarrowmathbb{N}$ is defined by

              $pi(m,n) = 2^m(2n+1)-1$

      (2) Bijection $zeta: mathbb{N}^+ imesmathbb{N}^+ imesmathbb{N}^+ ightarrowmathbb{N}$ is defined by

              $zeta(m,n,q)=pi(pi(m-1,n-1),q-1)$

      (3) Bijection $ au:igcup_{k>0}mathbb{N}^k ightarrowmathbb{N}$ is defined by

              $ au(a_1,...,a_k)=2^{a_1}+2^{a_1+a_2+1}+2^{a_1+a_2+a_3+2}+...+2^{a_1+a_2+...+a_k+k-1}-1$

      Then we can construct a bijection β from URM instructions to natural numbers:

              

      Hence, the URM instruction set is effectively denumerable.

      Theorem. The set of URM programs is effectively denumerable since we can construct the following bijection:

                $gamma(P)= au(eta(I_1),...,eta(I_s))$,

    where $P = I_1 I_2, ..., I_s$, and this is also known as the Gödel Number of a program.

      Theorem. The set of all n-ary computable functions is denumerable since we can construct an enumeration of those functions without repetitions.

      Theorem. The set of computable functions is denumerable since it is the union of the sets of n-ary computable functions for all $ninmathbb{N}^+$ and hence its bijection to $mathbb{N}$ can be constructed by using function $ au$.

      Moreover, we can construct a total unary function that is not computable by using Cantor's Diagonal Method decribed in Set Theory.

            $f(n)simeq egin{cases}phi_n(n)+1 & ext{if }phi_n(n) ext{ is defined }\ uparrow & ext{ otherwise }end{cases}$

               

      The s-m-n Theorem:  for $m, n in mathbb{N}^+$, there is a total computable (m+1)-ary function $s_n^m(e,vec{x})$ such that $phi_e^{m+n}(vec{x},vec{y})simeqphi_{s_n^m(e,vec{x})}^n(vec{y})$.

    References:

      1. Cutland, Nigel. Computability: an introduction to recursive function theory[M]. Cambridge: Cambridge University Press, 1980

  • 相关阅读:
    ESP32 SDA和SCL
    ESP32的HSPI和VSPI区别
    ffmpeg生成视频封面图
    小程序读取几种不同格式json数据(小程序json解析)
    ajax
    使用Java语言,连接linux服务器,并远程执行shell 脚本
    Echarts饼图的使用
    js提取对象数组中的某一个属性
    java读取文件推送报文
    java读取本地文件内容TXT文件
  • 原文地址:https://www.cnblogs.com/DevinZ/p/4418442.html
Copyright © 2011-2022 走看看