zoukankan      html  css  js  c++  java
  • Computability 2: Gödel Number

      A set $X$ is effectively denumerable iff there is a bijection $f:X ightarrowmathbb{N}$ such that both $f$ and $f^{-1}$ are effectively computable functions.

      Theorem. The set of the URM instructions is effectively denumerable.

      To see this, we should define the following functions:

      (1) Bijection $pi:mathbb{N} imesmathbb{N} ightarrowmathbb{N}$ is defined by

              $pi(m,n) = 2^m(2n+1)-1$

      (2) Bijection $zeta: mathbb{N}^+ imesmathbb{N}^+ imesmathbb{N}^+ ightarrowmathbb{N}$ is defined by

              $zeta(m,n,q)=pi(pi(m-1,n-1),q-1)$

      (3) Bijection $ au:igcup_{k>0}mathbb{N}^k ightarrowmathbb{N}$ is defined by

              $ au(a_1,...,a_k)=2^{a_1}+2^{a_1+a_2+1}+2^{a_1+a_2+a_3+2}+...+2^{a_1+a_2+...+a_k+k-1}-1$

      Then we can construct a bijection β from URM instructions to natural numbers:

              

      Hence, the URM instruction set is effectively denumerable.

      Theorem. The set of URM programs is effectively denumerable since we can construct the following bijection:

                $gamma(P)= au(eta(I_1),...,eta(I_s))$,

    where $P = I_1 I_2, ..., I_s$, and this is also known as the Gödel Number of a program.

      Theorem. The set of all n-ary computable functions is denumerable since we can construct an enumeration of those functions without repetitions.

      Theorem. The set of computable functions is denumerable since it is the union of the sets of n-ary computable functions for all $ninmathbb{N}^+$ and hence its bijection to $mathbb{N}$ can be constructed by using function $ au$.

      Moreover, we can construct a total unary function that is not computable by using Cantor's Diagonal Method decribed in Set Theory.

            $f(n)simeq egin{cases}phi_n(n)+1 & ext{if }phi_n(n) ext{ is defined }\ uparrow & ext{ otherwise }end{cases}$

               

      The s-m-n Theorem:  for $m, n in mathbb{N}^+$, there is a total computable (m+1)-ary function $s_n^m(e,vec{x})$ such that $phi_e^{m+n}(vec{x},vec{y})simeqphi_{s_n^m(e,vec{x})}^n(vec{y})$.

    References:

      1. Cutland, Nigel. Computability: an introduction to recursive function theory[M]. Cambridge: Cambridge University Press, 1980

  • 相关阅读:
    VC++6.0程序打开文件内存错误解决方法
    c++ vc6.0环境sp6补丁
    Net 应用程序如何在32位操作系统下申请超过2G的内存
    DataTable 排序
    VC UI 界面库
    让CSS兼容IE和Firefox的技巧集合
    两句CSS属性让点击图片链接时的虚线框消失
    一个常用的表单文本框input输入提示
    Css优先级分析
    清除浮动四种方法
  • 原文地址:https://www.cnblogs.com/DevinZ/p/4418442.html
Copyright © 2011-2022 走看看