zoukankan      html  css  js  c++  java
  • 【欧拉函数筛】Visible Lattice Points

    题目描述

    A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

    Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.

    输入

    The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
    Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

    输出

    For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

    样例输入

    4
    2
    4
    5
    231
    

    样例输出

    1 2 5
    2 4 13
    3 5 21
    4 231 32549



    #include <bits/stdc++.h>
    #define ll long long
    #define ull unsigned long long
    #define ld long double
    using namespace std;
    const int maxn=10000;
    int n,c;
    int ret[maxn];
    int prime[maxn],phi[maxn],ant,ans;
    bool isprime[maxn];
    void getphi()
    {
        phi[1]=1;
        for(int i=2;i<=maxn;i++)
        {
            if(!isprime[i])
            {
                prime[++ant]=i;
                phi[i]=i-1;
            }
            for(int j=1;j<=ant;j++)
            {
                if(i*prime[j]>maxn)
                    break;
                isprime[i*prime[j]]=1;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                else
                {
                    phi[i*prime[j]]=phi[i]*(prime[j]-1);
                }
            }
        }
    }
    int main()
    {
        getphi();
        for(int i=1;i<=maxn;i++)
        {
            ret[i]=phi[i]+ret[i-1];
        }
        cin>>c;
        int t=1;
        while(c--)
        {
            cin>>n;
            int pos=0;
            cout<<t<<" "<<n<<" "<<(2*ret[n]+1)<<endl;
            t++;
        }
        return 0;
    }
  • 相关阅读:
    2.5 进程控制之wait函数
    2.4 进程控制之僵尸进程和孤儿进程
    九、IIC驱动原理分析
    2.3 进程控制之exec函数族
    8.2 USB键盘驱动编写和测试
    1. tty终端接收数据原理
    第3章 MySQL常用增,删,改,查,用户授权,备份,等操作
    Linux命令总结--top命令
    Linux--LNMP
    Linux命令总结-ps pstree pgrep命令
  • 原文地址:https://www.cnblogs.com/Diliiiii/p/9516005.html
Copyright © 2011-2022 走看看