zoukankan      html  css  js  c++  java
  • HDU4565 So Easy! 矩阵快速幂

    题目链接

    传送门

    题目

    思路

    因为((a-1)^{2}<b<a^2),所以((a-1)<sqrt b < a),因此(a-sqrt b < 1),从而有((a-sqrt b)^{n}<1)
    (C_{n}=(a+sqrt b)^n+(a-sqrt b)^n),由上一段可以得知(lceil C_{n} ceil = S_n)
    (2aC_n=((a-sqrt b)+(a+sqrt b))C_n=(a-sqrt b)C_n+(a+sqrt b)C_n=C_{n+1}+(a^2-b)C_{n-1})
    因此(C_n)具有线性递推式(C_n=2aC_{n-1}+(b-a^2)C_{n-2})

    代码实现如下

    #include <set>
    #include <map>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <ctime>
    #include <bitset>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long LL;
    typedef pair<LL, LL> pLL;
    typedef pair<LL, int> pLi;
    typedef pair<int, LL> piL;;
    typedef pair<int, int> pii;
    typedef unsigned long long uLL;
    
    #define lson rt<<1
    #define rson rt<<1|1
    #define lowbit(x) x&(-x)
    #define name2str(name) (#name)
    #define bug printf("*********
    ")
    #define debug(x) cout<<#x"=["<<x<<"]" <<endl
    #define FIN freopen("in","r",stdin)
    #define IO ios::sync_with_stdio(false),cin.tie(0)
    
    const double eps = 1e-8;
    const int mod = 1e9 + 7;
    const int maxn = 1e6 + 7;
    const double pi = acos(-1);
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3fLL;
    
    int n, m, x, y;
    int f[5], a[5][5];
    
    void mulself(int a[5][5]) {
        int c[5][5];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 2; i++) {
            for(int j = 0; j < 2; j++) {
                for(int k = 0; k < 2; k++) {
                    c[i][j] = (c[i][j] + (long long)a[i][k] * a[k][j]) % m;
                }
            }
        }
        memcpy(a, c, sizeof(c));
    }
    
    void mul(int f[5], int a[5][5]) {
        int c[5];
        memset(c, 0, sizeof(c));
        for(int i = 0; i < 2; i++) {
            for(int j = 0; j < 2; j++) {
                c[i] = (c[i] + (long long)f[j] * a[j][i] ) % m;
            }
        }
        memcpy(f, c, sizeof(c));
    }
    
    
    int main() {
        while(~scanf("%d%d%d%d", &x, &y, &n, &m)) {
            f[0] = (LL)ceil((x * x % m + y) % m + 2 * x * sqrt(y)) % m, f[1] = 2 * x % m;
            if(n == 1) {
                printf("%d
    ", f[1]);
                continue;
            } else if(n == 2) {
                printf("%d
    ", f[0]);
                continue;
            }
            a[0][0] = 2 * x, a[0][1] = 1;
            a[1][0] = ((y - x * x) % m + m) % m, a[1][1] = 0;
            n -= 2;
            while(n) {
                if(n & 1) mul(f, a);
                mulself(a);
                n >>= 1;
            }
            printf("%d
    ", f[0] % m);
        }
        return 0;
    }
    
  • 相关阅读:
    美国商务签证面试经历
    正则表达式匹配字符串中的数值部分并将其返回
    在WPF中使用水晶报表for vs2010的方法
    Wpf中用代码执行控件的单击事件
    WPF项目中使用水晶报表for vs2010时的一个找不到程序集的问题
    WinForm实现全屏方法
    wpf中将数据导出为Excel
    WinForm实现窗体上控件的自由拖动
    在WPF中使用WinForm控件方法
    多样、互动的WinForm UI设计与开发思路(Flash、Html等)
  • 原文地址:https://www.cnblogs.com/Dillonh/p/11162361.html
Copyright © 2011-2022 走看看