zoukankan      html  css  js  c++  java
  • Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021

    Description

    Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

    • Exponentiation: 422016=4242...42����������������2016 times422016=42⋅42⋅...⋅42⏟2016 times.
    • Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons

    In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n​ as
    exponial(n)=n(n − 1)(n − 2)21
    For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).

    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    Input

    There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).

    Output

    Output a single integer, the value of exponial(n) mod m.

    Sample Input

    2 42
    5 123456789
    94 265

    Sample Output

    2
    16317634
    39

    思路:本题是一道经典的指数循环定理简记e(n)=exponial(n)e(n)=exponial(n),利用欧拉定理进行降幂即可,不过要注意会爆int。指数循环公式为指数循环公式为A^B = A^(B %  φ(C) +  φ(C)) % C,其中 φ(C)为1~C-1中与C互质的数的个数。

    代码如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 
     4 typedef long long ll;
     5 int n, m;
     6 
     7 ll euler(int n) {
     8     ll ans = n;
     9     for(int i = 2; i * i <= n; i++) {
    10         if(n % i == 0) {
    11             ans = ans / i * (i - 1);
    12             while(n % i == 0) n /= i;
    13         }
    14     }
    15     if(n > 1) ans = ans / n * (n - 1);
    16     return ans;
    17 }
    18 
    19 ll ModPow(int x, int p, ll mod) {
    20     ll rec = 1;
    21     while(p > 0) {
    22         if(p & 1) rec = (ll)rec * x % mod;
    23         x = (ll)x * x % mod;
    24         p >>= 1;
    25     }
    26     return rec;
    27 }
    28 
    29 ll slove(int n, ll m) {
    30     if(m == 1) return 0;
    31     if(n == 1) return 1 % m;
    32     if(n == 2) return 2 % m;
    33     if(n == 3) return 9 % m;
    34     if(n == 4) return (1 << 18) % m;
    35     return (ll)ModPow(n, euler(m), m) * ModPow(n, slove(n - 1, euler(m)), m) % m;
    36 }
    37 
    38 int main() {
    39     while(~scanf("%d%d", &n, &m)) {
    40         printf("%lld
    ",slove(n, m));
    41     }
    42     return 0;
    43 }
    有不懂的请私聊我QQ(右侧公告里有QQ号)或在下方回复
  • 相关阅读:
    Python_Tips[3] -> sort/sorted 排序函数
    Python_Tips[2] -> 函数延后估值及字节码分析
    Python_Tips[1] -> 利用 Python 的字典实现 Switch 功能
    Python_Tips[0] -> 关于 import
    Python与数据库[2] -> 关系对象映射/ORM[4] -> sqlalchemy 的显式 ORM 访问方式
    Python与数据库[2] -> 关系对象映射/ORM[3] -> sqlalchemy 的声明层 ORM 访问方式
    Python与数据库[2] -> 关系对象映射/ORM[2] -> 建立声明层表对象的两种方式
    JS实现网页选取截屏 保存+打印 功能(转)
    nodejs+koa2 实现一个get请求
    windwos下安装使用nginx(转)
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8877711.html
Copyright © 2011-2022 走看看