zoukankan      html  css  js  c++  java
  • Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021

    Description

    Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

    • Exponentiation: 422016=4242...42����������������2016 times422016=42⋅42⋅...⋅42⏟2016 times.
    • Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons

    In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n​ as
    exponial(n)=n(n − 1)(n − 2)21
    For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).

    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    Input

    There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).

    Output

    Output a single integer, the value of exponial(n) mod m.

    Sample Input

    2 42
    5 123456789
    94 265

    Sample Output

    2
    16317634
    39

    思路:本题是一道经典的指数循环定理简记e(n)=exponial(n)e(n)=exponial(n),利用欧拉定理进行降幂即可,不过要注意会爆int。指数循环公式为指数循环公式为A^B = A^(B %  φ(C) +  φ(C)) % C,其中 φ(C)为1~C-1中与C互质的数的个数。

    代码如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 
     4 typedef long long ll;
     5 int n, m;
     6 
     7 ll euler(int n) {
     8     ll ans = n;
     9     for(int i = 2; i * i <= n; i++) {
    10         if(n % i == 0) {
    11             ans = ans / i * (i - 1);
    12             while(n % i == 0) n /= i;
    13         }
    14     }
    15     if(n > 1) ans = ans / n * (n - 1);
    16     return ans;
    17 }
    18 
    19 ll ModPow(int x, int p, ll mod) {
    20     ll rec = 1;
    21     while(p > 0) {
    22         if(p & 1) rec = (ll)rec * x % mod;
    23         x = (ll)x * x % mod;
    24         p >>= 1;
    25     }
    26     return rec;
    27 }
    28 
    29 ll slove(int n, ll m) {
    30     if(m == 1) return 0;
    31     if(n == 1) return 1 % m;
    32     if(n == 2) return 2 % m;
    33     if(n == 3) return 9 % m;
    34     if(n == 4) return (1 << 18) % m;
    35     return (ll)ModPow(n, euler(m), m) * ModPow(n, slove(n - 1, euler(m)), m) % m;
    36 }
    37 
    38 int main() {
    39     while(~scanf("%d%d", &n, &m)) {
    40         printf("%lld
    ",slove(n, m));
    41     }
    42     return 0;
    43 }
    有不懂的请私聊我QQ(右侧公告里有QQ号)或在下方回复
  • 相关阅读:
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
    小花梨的三角形(暴力上下扫三角形)
    调手表(bfs)
    Educational Codeforces Round 65 (Rated for Div. 2)(ACD)B是交互题,不怎么会
    C. News Distribution(并查集)
    Codeforces Round #560 (Div. 3)A-E
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8877711.html
Copyright © 2011-2022 走看看