zoukankan      html  css  js  c++  java
  • Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021

    Description

    Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

    • Exponentiation: 422016=4242...42����������������2016 times422016=42⋅42⋅...⋅42⏟2016 times.
    • Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

    Illustration of exponial(3) (not to scale), Picture by C.M. de Talleyrand-Périgord via Wikimedia Commons

    In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n​ as
    exponial(n)=n(n − 1)(n − 2)21
    For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).

    Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

    Input

    There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).

    Output

    Output a single integer, the value of exponial(n) mod m.

    Sample Input

    2 42
    5 123456789
    94 265

    Sample Output

    2
    16317634
    39

    思路:本题是一道经典的指数循环定理简记e(n)=exponial(n)e(n)=exponial(n),利用欧拉定理进行降幂即可,不过要注意会爆int。指数循环公式为指数循环公式为A^B = A^(B %  φ(C) +  φ(C)) % C,其中 φ(C)为1~C-1中与C互质的数的个数。

    代码如下:
     1 #include <cstdio>
     2 #include <cstring>
     3 
     4 typedef long long ll;
     5 int n, m;
     6 
     7 ll euler(int n) {
     8     ll ans = n;
     9     for(int i = 2; i * i <= n; i++) {
    10         if(n % i == 0) {
    11             ans = ans / i * (i - 1);
    12             while(n % i == 0) n /= i;
    13         }
    14     }
    15     if(n > 1) ans = ans / n * (n - 1);
    16     return ans;
    17 }
    18 
    19 ll ModPow(int x, int p, ll mod) {
    20     ll rec = 1;
    21     while(p > 0) {
    22         if(p & 1) rec = (ll)rec * x % mod;
    23         x = (ll)x * x % mod;
    24         p >>= 1;
    25     }
    26     return rec;
    27 }
    28 
    29 ll slove(int n, ll m) {
    30     if(m == 1) return 0;
    31     if(n == 1) return 1 % m;
    32     if(n == 2) return 2 % m;
    33     if(n == 3) return 9 % m;
    34     if(n == 4) return (1 << 18) % m;
    35     return (ll)ModPow(n, euler(m), m) * ModPow(n, slove(n - 1, euler(m)), m) % m;
    36 }
    37 
    38 int main() {
    39     while(~scanf("%d%d", &n, &m)) {
    40         printf("%lld
    ",slove(n, m));
    41     }
    42     return 0;
    43 }
    有不懂的请私聊我QQ(右侧公告里有QQ号)或在下方回复
  • 相关阅读:
    react跳转url,跳转外链,新页面打开页面
    如何把大段文字转为带html标签的文字
    react给一个div行内加背景图片并实现cover覆盖模式居中显示
    react获取当前页面的url参数
    mongodb查询数据库中某个字段中的值包含某个字符串的方法
    react实现多行文本超出加省略号
    小程序首页获取数据给数组赋值,实现加载更多,以及遇到的坑
    小程序渲染html的两种方法
    小程序url传参如何写变量
    小程序在父组件执行子组件方法,可适用于下拉刷新上拉加载之后执行子组件方法
  • 原文地址:https://www.cnblogs.com/Dillonh/p/8877711.html
Copyright © 2011-2022 走看看