zoukankan      html  css  js  c++  java
  • hdu 3507 Print Article 斜率优化DP

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 17335    Accepted Submission(s): 5310


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    一个本来朴素的想法是 dp[i] = min{dp[j] + m + (sum[i]-sum[j])^2} (1<=j<i) 
    然后这个方法是O(n^2的)
    用斜率优化一下 (可以假设两个点 j,k 然后假设相应的 cost[j] <= cost[k] , 这样可以得到一个公式) 形如 f(k)-f(j) <= 2*f(i)*(sum[k] - sum[j]) 
    接着就可以 用单调栈来维护和更新 复杂度就成O(n)的了
     
    #include <iostream>
    #include <math.h>
    #include <algorithm>
    #include <string.h>
    #include <string>
    
    #define rep(i,l,r) for(int i=l;i<=r;i++)
    using namespace std;
    
    typedef long long ll;
    const int N = 500000+10;
    int n, m, c[N];
    
    ll sum[N], dp[N], Q[N];
    
    void init() {
        memset(dp,0x3f,sizeof(dp));
    }
    
    
    /*
    朴素想法
    void solve() 
    {
        dp[1] = 1LL*c[1]*c[1] + m;
        for(int i=2;i<=n;i++) {
            for(int j=1;j<i;j++) {
                dp[i] = min(dp[i], dp[j] + m + 1LL*(sum[i]-sum[j])*(sum[i]-sum[j]));
            }
        }
        cout << dp[n] <<endl;
    }
    */
    
    void solve() 
    {
        dp[1] = 1LL*c[1]*c[1]+m;
        int st=0,ed=0;
        Q[ed++] = 0; dp[0]=0;
        for(int i=1;i<=n;i++) 
        {
            while (st+1 < ed)
            {
                int j=Q[st], k=Q[st+1];
                ll dx = sum[k] - sum[j];
                ll dy = 1LL*(dp[k] + sum[k]*sum[k] - dp[j] - sum[j]*sum[j]);
                if(dy <= 1LL*2*dx*sum[i]) st++;
                else break;
            }
            int j=Q[st];
            dp[i] = dp[j] + m + (sum[i]-sum[j])*(sum[i]-sum[j]);
            while (st+1 < ed) 
            {
                int j=Q[ed-2],k=Q[ed-1];
                ll dx1 = sum[i] - sum[k];
                ll dx2 = sum[i] - sum[j];
                ll dy1 = 1LL*(dp[i] + sum[i]*sum[i] -dp[k] - sum[k]*sum[k]);
                ll dy2 = 1LL*(dp[i] + sum[i]*sum[i] -dp[j] - sum[j]*sum[j]);  
                if(dy1 * dx2 <= dy2 * dx1) ed--;
                else break;
            }
            Q[ed++]=i;
        }
        cout << dp[n] <<endl;
    }
    
    int main () 
    {
        while (scanf("%d %d",&n, &m)==2) {
            init();
            rep(i,1,n)
                scanf("%d", &c[i]),sum[i]=sum[i-1]+c[i];
            solve();    
        }
        return 0;
    }
  • 相关阅读:
    LinkedHashSet的实现原理
    HashSet的实现原理
    HashMap的实现原理
    pl/sql 笔记之存储过程、函数、包、触发器(下)
    pl/sql 笔记之基础(上)
    第三方网站微信登录实现
    kafka connect 创建、删除连接器connector(非常重要!!!!)
    Kafka Connect JDBC-Source 源连接器配置属性
    kafka connect(非常重要)
    kafka connect 使用说明
  • 原文地址:https://www.cnblogs.com/Draymonder/p/9525645.html
Copyright © 2011-2022 走看看