zoukankan      html  css  js  c++  java
  • Strom的trident单词计数代码

      1 /**
      2  * 单词计数
      3  */
      4 public class LocalTridentCount {
      5     
      6     public static class MyBatchSpout implements IBatchSpout {
      7 
      8         Fields fields;
      9         HashMap<Long, List<List<Object>>> batches = new HashMap<Long, List<List<Object>>>();
     10         
     11         public MyBatchSpout(Fields fields) {
     12             this.fields = fields;
     13         }
     14         @Override
     15         public void open(Map conf, TopologyContext context) {
     16         }
     17 
     18         @Override
     19         public void emitBatch(long batchId, TridentCollector collector) {
     20             List<List<Object>> batch = this.batches.get(batchId);
     21             if(batch == null){
     22                 batch = new ArrayList<List<Object>>();
     23                 Collection<File> listFiles = FileUtils.listFiles(new File("d:\stormtest"), new String[]{"txt"}, true);
     24                 for (File file : listFiles) {
     25                     List<String> readLines;
     26                     try {
     27                         readLines = FileUtils.readLines(file);
     28                         for (String line : readLines) {
     29                             batch.add(new Values(line));
     30                         }
     31                         FileUtils.moveFile(file, new File(file.getAbsolutePath()+System.currentTimeMillis()));
     32                     } catch (IOException e) {
     33                         e.printStackTrace();
     34                     }
     35                     
     36                 }
     37                 if(batch.size()>0){
     38                     this.batches.put(batchId, batch);
     39                 }
     40             }
     41             for(List<Object> list : batch){
     42                 collector.emit(list);
     43             }
     44         }
     45 
     46         @Override
     47         public void ack(long batchId) {
     48             this.batches.remove(batchId);
     49         }
     50 
     51         @Override
     52         public void close() {
     53         }
     54 
     55         @Override
     56         public Map getComponentConfiguration() {
     57             Config conf = new Config();
     58             conf.setMaxTaskParallelism(1);
     59             return conf;
     60         }
     61 
     62         @Override
     63         public Fields getOutputFields() {
     64             return fields;
     65         }
     66         
     67     }
     68     
     69     /**
     70      * 对一行行的数据进行切割成一个个单词
     71      */
     72     public static class MySplit extends BaseFunction{
     73 
     74         @Override
     75         public void execute(TridentTuple tuple, TridentCollector collector) {
     76             String line = tuple.getStringByField("lines");
     77             String[] words = line.split("	");
     78             for (String word : words) {
     79                 collector.emit(new Values(word));
     80             }
     81         }
     82         
     83     }
     84     
     85     public static class MyWordAgge extends BaseAggregator<Map<String, Integer>>{
     86 
     87         @Override
     88         public Map<String, Integer> init(Object batchId,
     89                 TridentCollector collector) {
     90             return new HashMap<String, Integer>();
     91         }
     92 
     93         @Override
     94         public void aggregate(Map<String, Integer> val, TridentTuple tuple,
     95                 TridentCollector collector) {
     96             String key = tuple.getString(0);
     97             /*Integer integer = val.get(key);
     98             if(integer==null){
     99                 integer=0;
    100             }
    101             integer++;
    102             val.put(key, integer);*/
    103             val.put(key, MapUtils.getInteger(val, key, 0)+1);
    104         }
    105 
    106         @Override
    107         public void complete(Map<String, Integer> val,
    108                 TridentCollector collector) {
    109             collector.emit(new Values(val));
    110         }
    111         
    112     }
    113     
    114     /**
    115      * 汇总局部的map,并且打印结果
    116      *
    117      */
    118     public static class MyCountPrint extends BaseFunction{
    119 
    120         HashMap<String, Integer> hashMap = new HashMap<String, Integer>();
    121         @Override
    122         public void execute(TridentTuple tuple, TridentCollector collector) {
    123             Map<String, Integer> map = (Map<String, Integer>)tuple.get(0);
    124             for (Entry<String, Integer> entry : map.entrySet()) {
    125                 String key = entry.getKey();
    126                 Integer value = entry.getValue();
    127                 Integer integer = hashMap.get(key);
    128                 if(integer==null){
    129                     integer=0;
    130                 }
    131                 hashMap.put(key, integer+value);
    132             }
    133             
    134             Utils.sleep(1000);
    135             System.out.println("==================================");
    136             for (Entry<String, Integer> entry : hashMap.entrySet()) {
    137                 System.out.println(entry);
    138             }
    139         }
    140         
    141     }
    142     
    143     
    144     public static void main(String[] args) {
    145         //大体流程:首先设置一个数据源MyBatchSpout,会监控指定目录下文件的变化,当发现有新文件的时候把文件中的数据取出来,
    146         //然后封装到一个batch中发射出来.就会对tuple中的数据进行处理,把每个tuple中的数据都取出来,然后切割..切割成一个个的单词.
    147         //单词发射出来之后,会对单词进行分组,会对一批假设有10个tuple,会对这10个tuple分完词之后的单词进行分组, 相同的单词分一块  
    148         //分完之后聚合 把相同的单词使用同一个聚合器聚合  然后出结果  每个单词出现多少次...
    149         //进行汇总  先每一批数据局部汇总  最后全局汇总....
    150         //这个代码也不是很简单...挺多....就是使用批处理的方式.
    151         
    152         TridentTopology tridentTopology = new TridentTopology();
    153         
    154         tridentTopology.newStream("spoutid", new MyBatchSpout(new Fields("lines")))
    155             .each(new Fields("lines"), new MySplit(), new Fields("word"))
    156             .groupBy(new Fields("word"))//用到了分组 对一批tuple中的单词进行分组..
    157             .aggregate(new Fields("word"), new MyWordAgge(), new Fields("wwwww"))//用到了聚合
    158             .each(new Fields("wwwww"), new MyCountPrint(), new Fields(""));
    159         
    160         LocalCluster localCluster = new LocalCluster();
    161         String simpleName = TridentMeger.class.getSimpleName();
    162         localCluster.submitTopology(simpleName, new Config(), tridentTopology.build());
    163     }
    164 }

    指定路径下文件中的内容:

    程序运行结果:

  • 相关阅读:
    ex3多类问题和NN中的前向传播
    逻辑关系下的NN应用
    NN-Neural Network
    ex2:逻辑回归及正则条件下的练习
    Overfitting&Underfitting Problems
    操作系统内存管理之虚拟内存
    C陷阱与缺陷读书笔记(三)
    操作系统常见面试题
    计算机网络常考面试题总结
    堆及堆排序
  • 原文地址:https://www.cnblogs.com/DreamDrive/p/6676021.html
Copyright © 2011-2022 走看看