zoukankan      html  css  js  c++  java
  • Fibonacci Tree 最小生成树

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 434    Accepted Submission(s): 146


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     
    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     
    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     
    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     
    Sample Output
    Case #1: Yes Case #2: No
     
    Source
     
    Recommend
    We have carefully selected several similar problems for you:  4789 4788 4787 4785 4784 
    const int INF = 1000000000;
    const double eps = 1e-8;
    const int maxn = 300000;
    vector<int> g[maxn];
    struct Edge
    {
        int a;
        int b;
        int c;
        Edge(int _a,int _b,int _c):a(_a),b(_b),c(_c){}
    };
    void init()
    {
        repf(i,1,100010)
            g[i].clear();
    }
    vector<Edge> edges;
    int p[maxn];
    int find(int x)
    {
        if(p[x] == x)
            return x;
        else
        {
            p[x] = find(p[x]);
            return p[x];
        }
    }
    
    int kruskal()
    {
        int ans = 0;
        rep(i,0,edges.size())
        {
            int x = find(edges[i].a);
            int y = find(edges[i].b);
            if(x != y)
            {
                p[x] = y;
                ans += edges[i].c;
            }
        }
        return ans;
    }
    
    bool cmp1(Edge e1,Edge e2)
    {
        return e1.c > e2.c;
    }
    bool cmp2(Edge e1,Edge e2)
    {
        return e1.c < e2.c;
    }
    
    int vis[maxn];
    
    int vis1[maxn];
    void dfs(int x)
    {
        if(vis1[x]) return ;
        vis1[x] = 1;
        rep(i,0,g[x].size())
            dfs(g[x][i]);
    }
    int main() 
    {
        //freopen("in.txt","r",stdin);
        int T;
        scanf("%d",&T);
        clr(vis);
        vis[1] = 1;
        int a = 1;
        int b = 1;
        while(a + b <= 100000)
        {
            vis[a + b] = 1;
            int t = a;
            a = b;
            b = t + b;
        }
        int k = 1;
        while(T--)
        {
            edges.clear();
            init();
            clr(vis1);
            int n,m;
            scanf("%d%d",&n,&m);
            repf(i,1,n) p[i] = i;
            repf(i,1,m)
            {
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                g[a].push_back(b);
                g[b].push_back(a);
                edges.push_back(Edge(a,b,c));
            }
            dfs(1);
            int tag = 1;
            repf(i,1,n) if(vis1[i] == 0) 
            {
                tag = 0;break;
            }
            if(tag == 0)
            {
                printf("Case #%d: ",k++);
                cout<<"No"<<endl;
                continue;
            }
            sort(edges.begin(),edges.end(),cmp1);
            
            int  Max = kruskal();
            repf(i,1,n) p[i] = i;
            sort(edges.begin(),edges.end(),cmp2);
            
            int Min = kruskal();
            
            int flag = 0;
            repf(i,Min,Max)
                if(vis[i])
                {
                    flag =1;
                    break;
                }
            printf("Case #%d: ",k++);
            if(flag)
                cout<<"Yes"<<endl;
            else
                cout<<"No"<<endl;
        }
        return 0;
    }
  • 相关阅读:
    【Swing】简单的计算器
    【SQL】嵌套查询与子查询
    【网络协议抓包分析】TCP传输控制协议(连接建立、释放)
    【网络协议抓包分析】IP互联网协议
    ******常见数据库笔试题*****
    OSI参考模型 VS TCP/IP参考模
    TCP/IP四层模型
    数组实现栈的功能
    子网掩码怎么计算
    C# 启动和结束一个线程
  • 原文地址:https://www.cnblogs.com/DreamHighWithMe/p/3446035.html
Copyright © 2011-2022 走看看