zoukankan      html  css  js  c++  java
  • The Preliminary Contest for ICPC China Nanchang National Invitational

    Contest Info


    [Practice Link](https://www.jisuanke.com/contest/2290?view=challenges)
    Solved A B C D E F G H I J K L M
    8/13 O - - O - - O O O O O - O
    • O 在比赛中通过
    • Ø 赛后通过
    • ! 尝试了但是失败了
    • - 没有尝试

    Solutions


    A. PERFECT NUMBER PROBLEM

    签到题。

    #include <bits/stdc++.h>
    using namespace std;
    
    int main() {
    	int a[] = {
    		6, 28, 496, 8128, 33550336
    	};
    	for (int i = 0; i < 5; ++i) {
    		printf("%d
    ", a[i]);
    	}
    	return 0;
    }
    

    D. Match Stick Game

    G. tsy's number

    H. Coloring Game'

    I. Max answer

    题意:
    定义一个区间([l, r])的值为:

    [egin{eqnarray*} f(l, r) = (max_{i = l}^r a_i) cdot (sumlimits_{i = l}^r a_i) end{eqnarray*} ]

    思路一:
    单调栈求出当前点左边第一个比它小的位置,当前点右边第一个比它小的位置。
    然后就算出管辖范围,然后线段树维护一下最大最小区间前后缀即可。
    代码一:

    #include <bits/stdc++.h>
    using namespace std;
    
    #define ll long long
    #define N 500010
    #define INF 0x3f3f3f3f
    #define INFLL 0x3f3f3f3f3f3f3f3f
    int n, a[N];
    ll sum[N];
    int f[N], g[N];
    int Sta[N], top;
    
    struct SEG {
    	struct node {
    		ll Max, Min;
    		node () {
    			Min = INFLL;
    			Max = -INFLL;
    		}
    		node (ll Max, ll Min) : Max(Max), Min(Min) {}
    		node operator + (const node &other) const {
    			node res = node();
    			res.Max = max(Max, other.Max);
    			res.Min = min(Min, other.Min);
    			return res;
    		}
    	}t[N << 2], res;
    	void build(int id, int l, int r) {
    		if (l == r) {
    			t[id] = node(sum[l], sum[l]);
    			return;
    		}
    		int mid = (l + r) >> 1;
    		build(id << 1, l, mid);
    		build(id << 1 | 1, mid + 1, r);
    		t[id] = t[id << 1] + t[id << 1 | 1];
    	}
    	void query(int id, int l, int r, int ql, int qr) {
    		if (ql > qr) {
    			return;
    		}
    		if (l >= ql && r <= qr) {
    			res = res + t[id];
    			return;
    		}
    		int mid = (l + r) >> 1;
    		if (ql <= mid) query(id << 1, l, mid, ql, qr);
    		if (qr > mid) query(id << 1 | 1, mid + 1, r, ql, qr);
    	}
    }seg;
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 1; i <= n; ++i) {
    			scanf("%d", a + i);
    		}
    		for (int i = 1; i <= n; ++i) {
    			sum[i] = sum[i - 1] + a[i];
    		}
    		seg.build(1, 1, n);
    		ll res = 0;
    
    		a[0] = a[n + 1] = -INF;
    		top = 0;
    		Sta[++top] = 0;
    		for (int i = 1; i <= n; ++i) {
    			while (a[i] <= a[Sta[top]]) {
    				--top;
    			}
    			f[i] = Sta[top];
    			Sta[++top] = i;
    		}
    		
    		top = 0;
    		Sta[++top] = n + 1;
    		for (int i = n; i >= 1; --i) {
    			while (a[i] <= a[Sta[top]]) {
    				--top;
    			}
    			g[i] = Sta[top];
    			Sta[++top] = i;
    		}
    	//	for (int i = 1; i <= n; ++i) {
    	//		printf("%d %d %d
    ", i, f[i], g[i]);
    	//	}
    		for (int i = 1; i <= n; ++i) {
    			if (a[i] == 0) {
    				continue;
    			} else if (a[i] < 0) {
    				seg.res = SEG::node();
    				ll x = 0, y = 0;	
    				seg.query(1, 1, n, f[i], i);
    				if (f[i] == 0) {
    					x = max(x, seg.res.Max);
    				} else {
    					x = seg.res.Max;
    				}
    				seg.res = SEG::node();
    				seg.query(1, 1, n, i, g[i] - 1);
    				y = seg.res.Min;
    				res = max(res, (y - x) * a[i]);
    			} else {
    				seg.res = SEG::node();
    				ll x = 0, y = 0;
    				seg.query(1, 1, n, f[i], i);
    				if (f[i] == 0) {
    					x = min(x, seg.res.Min);
    				} else {
    					x = seg.res.Min;
    				}
    				seg.res = SEG::node();
    				seg.query(1, 1, n, i, g[i] - 1);
    				y = seg.res.Max;
    				res = max(res, (y - x) * a[i]);
    			}
    		}
    			
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    
    

    思路二:
    建出笛卡尔树,然后就确定了区间最小值,再考虑中序遍历是原序列。
    那么左右子树分别维护区间和、区间最大最小前后缀,然后向上统计答案并合并

    #include <bits/stdc++.h>
    using namespace std;
    
    #define ll long long
    #define N 500010
    #define INF 0x3f3f3f3f
    int n, a[N];
    ll res;
    
    struct Cartesian_Tree {
    	struct node {
    		int id, val, fa;
    		// 0 前缀最值
    		// 1 后缀最值
    		ll Min[2], Max[2], sum;
    		int son[2];
    		node() {}
    		node (int id, int val, int fa) : id(id), val(val), fa(fa) {
    			memset(son, 0, sizeof son);
    			memset(Min, 0, sizeof Min);
    			memset(Max, 0, sizeof Max);
    			sum = 0;
    		}
    		bool operator < (const node &other) const {
    			return id < other.id;
    		}
    		
    	}t[N];
    	int root;
    	void init() {
    		t[0] = node(0, -INF, 0);
    	}
    	void build(int n, int *a) {
    		for (int i = 1; i <= n; ++i) {
    			t[i] = node(i, a[i], 0);
    		}
    		for (int i = 1; i <= n; ++i) {
    			int k = i - 1;
    
    			while (t[k].val > t[i].val) {
    				k = t[k].fa;
    			}
    
    			t[i].son[0] = t[k].son[1];
    			t[k].son[1] = i;
    			t[i].fa = k;
    			t[t[i].son[0]].fa = i;
    		}
    		root = t[0].son[1]; 
    	}
    	void DFS(int u) {
    		if (!u) return;
    		int ls = t[u].son[0], rs = t[u].son[1];
    		DFS(ls); DFS(rs);
    		res = max(res, t[u].val * (t[u].val + t[ls].Min[1] + t[rs].Min[0]));
    		res = max(res, t[u].val * (t[u].val + t[ls].Max[1] + t[rs].Max[0]));
    		t[u].sum = t[ls].sum + t[rs].sum + t[u].val;  
    		t[u].Min[0] = min(t[ls].Min[0], t[ls].sum + t[u].val + t[rs].Min[0]);
    		t[u].Min[1] = min(t[rs].Min[1], t[rs].sum + t[u].val + t[ls].Min[1]);
    		t[u].Max[0] = max(t[ls].Max[0], t[ls].sum + t[u].val + t[rs].Max[0]);
    		t[u].Max[1] = max(t[rs].Max[1], t[rs].sum + t[u].val + t[ls].Max[1]);
    	}
    }CT;
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 1; i <= n; ++i) {
    			scanf("%d", a + i);
    		}
    		res = -1e18;
    		CT.init();		
    		CT.build(n, a);
    		CT.DFS(CT.root);
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    J. Distance on the tree

    K. MORE XOR

    M. Subsequence

    题意:
    给出串(S),以及若干串(T_i),每次询问(T_i)是否是(S)的一个子序列。

    思路:
    建出序列自动机,暴力跑即可。
    时间复杂度:(mathcal{O}(26|S| + sum T_i))

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    #define N 100010
    int n, m, q;
    char s[N], t[N];
    int T[N][30], nx[30];
    
    int main() {
    	while (scanf("%s", s + 1) != EOF) {
    		n = strlen(s + 1);
    		for (int i = 0; i < 30; ++i) nx[i] = n + 1;
    		for (int i = n; i >= 0; --i) {
    			for (int j = 0; j < 26; ++j) {
    				T[i][j] = nx[j];	
    			}
    			if (i) {
    				nx[s[i] - 'a'] = i;
    			}
    		}
    		scanf("%d", &q);
    		while (q--) {
    			scanf("%s", t + 1);
    			m = strlen(t + 1);
    			int it = 0;
    			for (int i = 1; i <= m; ++i) {
    				it = T[it][t[i] - 'a'];	
    				if (it == n + 1) break;
    			}
    			puts(it == n + 1 ? "NO" : "YES");
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    预编译命令 #if DEBUG
    conda常用命令
    tensorflow 安装指南
    LocNET和池化理解
    同时安装cuda8和cuda9
    np.transpose
    python中List的slice用法
    书单
    训练工程
    linux 查看进程
  • 原文地址:https://www.cnblogs.com/Dup4/p/11154237.html
Copyright © 2011-2022 走看看