zoukankan      html  css  js  c++  java
  • 2018 Benelux Algorithm Programming Contest (BAPC 18)

    Contest Info


    [Practice Link](https://codeforc.es/gym/102007)
    Solved A B C D E F G H I J K
    8/11 O O O - - O O - O O O
    • O 在比赛中通过
    • Ø 赛后通过
    • ! 尝试了但是失败了
    • - 没有尝试

    Solutions


    A A Prize No One Can Win

    签到。

    view code
    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 1e5 + 10;
    int n, a[N], x;
    
    int main() {
    	while (scanf("%d%d", &n, &x) != EOF) {
    		for (int i = 1; i <= n; ++i) scanf("%d", a + i);
    		sort(a + 1, a + 1 + n);
    		int res = 1;
    		for (int i = 2; i <= n; ++i) {
    			if (a[i] + a[i - 1] <= x) {
    				++res;
    			} else break;
    		}
    		printf("%d
    ", res);
    	}
    	return 0;
    }
    

    B Birthday Boy

    题意:
    给出(n)个生日,现在要找个日期,使得在它前面离它最近的生日和它相距的天数最大,如果有多个,输出和(10-27)相距天数最大的。

    思路:
    题意读清楚就可以了,枚举每一天。

    view code
    #include <bits/stdc++.h>
    using namespace std;
    
    using pII = pair <int, int>;
    #define fi first
    #define se second
    int n; pII a[110]; char s[110];
    int mon[] = {
    	0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
    };
    bool operator < (pII a, pII b) {
    	if (a.fi < b.fi || (a.fi == b.fi && a.se <= b.se)) {
    		return true;
    	}
    	return false;
    }
    int dis(pII a, pII b) {
    	if (a < b) {
    		if (a.fi == b.fi) return b.se - a.se;
    		int res = mon[a.fi] - a.se;
    		for (int i = a.fi + 1; i < b.fi; ++i) res += mon[i];
    		res += b.se;
    		return res;
    	} else {
    		int res = mon[a.fi] - a.se; 
    		for (int i = a.fi + 1; i <= 12; ++i) res += mon[i];
    		for (int i = 1; i < b.fi; ++i) res += mon[i];
    		res += b.se; 
    		return res;
    	}
    }
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 1; i <= n; ++i) scanf("%s %02d-%02d", s, &a[i].fi, &a[i].se);
    		sort(a + 1, a + 1 + n, [&](pII x, pII y) {
    			if (x.fi != y.fi) return x.fi < y.fi;
    			return x.se < y.se;		
    		});
    		pII res = pII(-1, -1); int Max = -1;
    		a[0] = a[n];
    		int pos = 0;
    		for (int i = 1; i <= 12; ++i) {
    			for (int j = 1; j <= mon[i]; ++j) {
    				pII t = pII(i, j);
    				while (pos < n && a[pos + 1] < t) ++pos;
    				if (dis(a[pos], t) > Max) {
    					Max = dis(a[pos], t);
    					res = t;
    				} else if (dis(a[pos], t) == Max) {
    					if (dis(pII(10, 28), t) < dis(pII(10, 28), res)) {
    						res = t;
    					}
    				}
    			}
    		}
    		printf("%02d-%02d
    ", res.fi, res.se);
    	}
    	return 0;
    }
    

    C Cardboard Container

    题意:
    给出一个立方体的体积(V),算表面积

    思路:
    枚举长宽高,长宽高是(V)的因子,枚举量不大。

    view code
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    void getfac(vector <int> &vec, int n) {
    	vec.clear();
    	for (int i = 1; 1ll * i * i <= n; ++i) {
    		if (n % i == 0) {
    			vec.push_back(i);
    			if (i * i != n)
    			vec.push_back(n / i);
    		}
    	}
    }
    
    int main() {
    	int n;
    	while (scanf("%d", &n) != EOF) {
    		vector <int> vec_a;
    		getfac(vec_a, n);
    		ll res = 1e18;
    		for (auto a : vec_a) {
    			vector <int> vec_b;
    			getfac(vec_b, n / a);
    			for (auto &b : vec_b) {
    				int c = n / a / b;
    				res = min(res, 2ll * (a * b + a * c + b * c));
    			}
    		}
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    D Driver Disagreement

    题意:
    给出(n)个点的图,每个点都有两条边,并且每个点有一个标记(1)或者(0)
    现在两个人在同一点,但是他们不知道自己在哪一点,一个人觉得他们在(A),另一个人觉得他们在(B)
    然后他们所在的位置是(A)或者(B)
    现在需要设计一种路线,使得沿着路线走,如果从(A)出发走到一个点和从(B)出发走到一个点那个点的标记不一样,那么它们就知道谁对谁错了。
    现在问最少的路线长度。
    这个路线是每次选择往左走还是往右走,因为每个点有两条边

    E Entirely Unsorted Sequences

    题意:
    (n)个数,定义一个数是有序的当且仅当它左边的数都小于等于它,它右边的数都大于等于它。
    现在问有多少种这些数的排列,使得所有数都不是有序的。

    F Financial Planning

    题意:
    给出一些理财产品,对于每个理财产品,刚开始需要投入(c_i)的钱,之后每一天都会获得(p_i)的钱。
    过了(x)天,一款理财产品带来的收益是(xp_i - c_i)
    现在问,如果选择理财产品,使得(x)天后的收益大于等于(M)
    要满足(x)最小

    思路:
    二分(x),那么每款理财产品的收益固定,贪心的取。

    view code
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int N = 1e5 + 10;
    int n, m, p[N], c[N];
    bool check(ll x) {
    	ll res = 0;
    	for (int i = 1; i <= n; ++i) {
    		ll t = 1ll * p[i] * x - c[i];
    		res += max(0ll, t);
    		if (res >= m) return true;
    	}
    	return res >= m;
    }
    
    int main() {
    	while (scanf("%d%d", &n, &m) != EOF) {
    		for (int i = 1; i <= n; ++i) scanf("%d%d", p + i, c + i);
    		ll l = 0, r = 2e9, res = 2e9;
    		while (r - l >= 0) {
    			ll mid = (l + r) >> 1;
    			if (check(mid)) {
    				r = mid - 1;
    				res = mid;
    			} else {
    				l = mid + 1;
    			}
    		}
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    G Game Night

    题意:
    有一个长度为(n)的字符串环,里面只有'A', 'B', 'C'三种字符。
    问最少要移动多少个字符,使得同类字符所在的位置的连续的。

    思路:
    枚举最终形态,那么如果一个位置最终形态对应的位置不是本身,那么这个字符要动。
    维护三个前缀和(O(1))算贡献。

    view code
    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 1e5 + 10;
    int n, A[N], B[N], C[N]; char s[N];
    int get(char c, int l, int r) {
    	if (l > r) return 0;
    	if (c == 'A') return (A[r] - A[l - 1]);
    	else if (c == 'B') return (B[r] - B[l - 1]);
    	return (C[r] - C[l - 1]);
    }
    int gao(string t) {
    	int num[3];
    	for (int i = 0; i < 3; ++i)
    		num[i] = get(t[i], 1, n);
    	int res = 0;
    	for (int i = 0; i <= num[0]; ++i) {
    		res = max(res, get(t[0], 1, i) + get(t[1], i + 1, i + num[1]) + get(t[2], i + num[1] + 1, i + num[1] + num[2]) + get(t[0], i + num[1] + num[2] + 1, n));
    	}
    	return n - res;
    }
    
    int main() {
    	while (scanf("%d%s", &n, s + 1) != EOF) {
    		memset(A, 0, sizeof A);
    		memset(B, 0, sizeof B);
    		memset(C, 0, sizeof C);
    		for (int i = 1; i <= n; ++i) {
    			A[i] = A[i - 1] + (s[i] == 'A');
    			B[i] = B[i - 1] + (s[i] == 'B');
    			C[i] = C[i - 1] + (s[i] == 'C');
    		}
    		int res = 1e9;
    		string t = "ABC";
    		do {
    			res = min(res, gao(t));
    		} while (next_permutation(t.begin(), t.end()));
    		printf("%d
    ", res);
    	}
    	return 0;
    }
    

    H Harry the Hamster

    题意:
    有一张(n)个点(m)条边的有向图,每条边有边权,一个人在(S)点,它的左脑不想睡觉,它的右脑想睡觉。
    两个脑袋轮流操作,每次操作在当前点选择一条出边往下走。
    保证除了(T)点之外每个点都有出边,并且(T)没有出边。
    问两个脑袋都最优操作,最终能否到(T),能的话就输出到(T)的时间,不能的话就输出'infinity'

    I In Case of an Invasion, Please. . .

    题意:
    给出一张(n)个点(m)条边的无向图,每个点有(p_i)个人,有(s(1 leq s leq 10))个保护区。
    每个保护区有一个容量(c_i),保证(sum c_i geq sum p_i).
    现在所有人都要到保护区,令所有人到保护区的最大时间最小。

    思路:
    二分答案,那么对于每个点,我们可以知道在这个答案下,这个点上的人可以到达哪些保护区。
    那么用一个(s)的二进制状态表示它的可达状态,发现最多只有(2^s)种状态。
    将同种状态的点都缩起来,网络流判断是否流量等于(sum p_i)即可。

    view code
    #include <bits/stdc++.h>
    
    using namespace std;
    
    using ll = long long;
    
    const int N = 2e5 + 10;
    const ll INFLL = 0x3f3f3f3f3f3f3f3f;
    
    struct Dicnic {
    	static const int M = 2e6 + 10;
    	static const int N = 1e4 + 10;
    
    	struct Edge {
    		int to, nxt;
    		ll flow;
    
    		Edge() {}
    
    		Edge(int to, int nxt, ll flow): to(to), nxt(nxt), flow(flow) {}
    	}edge[M];
    
    	int S, T;
    	int head[N], tot;
    	int dep[N];
    
    	void Init() {
    		memset(head, -1, sizeof head);
    		tot = 0;
    	}
    
    	void set(int _S, int _T) {
    		S = _S;
    		T = _T;
    	}
    
    	void addedge(int u, int v, ll w, ll rw = 0) {
    		edge[tot] = Edge(v, head[u], w); head[u] = tot++;
    		edge[tot] = Edge(u, head[v], rw); head[v] = tot++;
    	}
    
    	bool BFS() {
    		memset(dep, -1, sizeof dep);
    		queue<int>q;
    		q.push(S);
    		dep[S] = 1;
    		while (!q.empty()) {
    			int u = q.front();
    			q.pop();
    			for (int i = head[u]; ~i; i = edge[i].nxt) {
    				if (edge[i].flow && dep[edge[i].to] == -1) {
    					dep[edge[i].to] = dep[u] + 1;
    					q.push(edge[i].to);
    				}
    			}
    		}
    		return dep[T] >= 0;
    	}
    
    	ll DFS(int u, ll f) {
    		if (u == T || f == 0) {
    			return f;
    		}
    		ll w, used = 0;
    		for (int i = head[u]; ~i; i = edge[i].nxt) {
    			if (edge[i].flow && dep[edge[i].to] == dep[u] + 1) {
    				w = DFS(edge[i].to, min(f - used, edge[i].flow));
    				edge[i].flow -= w;
    				edge[i ^ 1].flow += w;
    				used += w;
    				if (used == f) return f;
    			}
    		}
    		if (!used) dep[u] = -1;
    		return used;
    	}
    
    	ll solve() {
    		ll res = 0;
    		while (BFS()) {
    			res += DFS(S, INFLL);
    		}
    		return res;
    	}
    }dicnic;
    
    struct Edge {
    	int to, nxt;
    	ll w;
    
    	Edge() {}
    
    	Edge(int to, int nxt, ll w): to(to), nxt(nxt), w(w){}
    }edge[N << 2];
    
    int n, m, s;
    int a[N], c[N], p[N];
    int head[N], used[N], tot;
    ll dis[11][N];
    
    void Init() {
    	memset(head, -1, sizeof head);
    	tot = 0;
    }
    
    void addedge(int u, int v, int w) {
    	edge[tot] = Edge(v, head[u], w); head[u] = tot++;
    	edge[tot] = Edge(u, head[v], w); head[v] = tot++;
    }
    
    struct qnode {
    	int u;
    	ll w;
    
    	qnode() {}
    	
    	qnode(int u, ll w): u(u), w(w) {}
    
    	bool operator < (const qnode &other) const {
    		return w > other.w;
    	}
    };
    
    void Dij(int id, int S) {
    	for (int i = 1; i <= n; ++i) {
    		dis[id][i] = INFLL;
    		used[i] = false;
    	}
    	dis[id][S] = 0;
    	priority_queue<qnode> pq;
    	pq.push(qnode(S, 0));
    	while (!pq.empty()) {
    		int u = pq.top().u;
    		pq.pop();
    		if (used[u]) continue;
    		used[u] = true;
    		for (int i = head[u]; ~i; i = edge[i].nxt) {
    			int v = edge[i].to, w = edge[i].w;
    			if (!used[v] && dis[id][v] > dis[id][u] + w) {
    				dis[id][v] = dis[id][u] + w;
    				pq.push(qnode(v, dis[id][v]));
    			}
    		}
    	}
    }
    
    ll sum;
    ll mark[1 << 11];
    
    bool check(ll x) {
    	memset(mark, 0, sizeof mark);
    	for (int i = 1; i <= n; ++i) {
    		int S = 0;
    		for (int j = 1; j <= s; ++j) {
    			if (dis[j][i] <= x) {
    				S |= 1 << (j - 1);
    			}
    		}
    		mark[S] += p[i];
    	}
    	dicnic.Init();
    	int S = (1 << s) + s + 10, T = S + 1, tmp = 1 << s;
    	dicnic.set(S, T);
    	for (int i = 0; i < tmp; ++i) {
    		dicnic.addedge(S, i, mark[i]);
    		for (int j = 0; j < s; ++j) {
    			if (i & (1 << j)) {
    				dicnic.addedge(i, j + tmp, mark[i]);
    			}
    		}
    	}
    	for (int i = (1 << s), j = 1; j <= s; ++j, ++i) {
    		dicnic.addedge(i, T, c[j]);
    	}
    	ll res = dicnic.solve();
    	return res == sum;
    }
    
    int main() {
    	while (scanf("%d %d %d", &n, &m, &s) != EOF) {
    		Init();
    		sum = 0;
    		for (int i = 1; i <= n; ++i) {
    			scanf("%d", p + i);
    			sum += p[i];
    		}
    		for (int i = 1, u, v, w; i <= m; ++i) {
    			scanf("%d %d %d", &u, &v, &w);
    			addedge(u, v, w);
    		}
    		for (int i = 1; i <= s; ++i) {
    			scanf("%d %d", a + i, c + i);
    		}
    		for (int i = 1; i <= s; ++i) {
    			Dij(i, a[i]);
    		}
    		ll l = 0, r = INFLL, res = INFLL;
    		while (r - l >= 0) {
    			ll mid = (l + r) >> 1;
    			if (check(mid)) {
    				r = mid - 1;
    				res = mid;
    			} else {
    				l = mid + 1;
    			}
    		}
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    J Janitor Troubles

    题意:
    给出四条边,问这四条边构成的四边形的最大面积

    思路:
    四边形是内接圆四边形时最大。

    view code
    #include <bits/stdc++.h>
    
    using namespace std;
    
    using db = double;
    
    const db eps = 1e-8;
    
    int sgn(db x) {
    	if (fabs(x) < eps) return 0;
    	else return x > 0 ? 1 : -1;
    }
    
    inline db F(db a, db b, db c) {
    	db p = (a + b + c) / 2.0;
    	db res = sqrt(p * (p - a) * (p - b) * (p - c));
    	return res;
    }
    
    inline db f(db a, db b, db c, db d) {
    	db res = 0.0;
    	db l = max(fabs(a - b), fabs(c - d));
    	db r = min(fabs(a + b), fabs(c + d));
    	for (db e = l; e < r; e += 0.0005) {
    		if (a + b - e <= 0) continue;
    		if (a + e - b <= 0) continue;
    		if (b + e - a <= 0) continue;
    
    		if (c + d - e <= 0) continue;
    		if (c + e - d <= 0) continue;
    		if (d + e - a <= 0) continue;
    
    		res = max(res, F(a, b, e) + F(c, d, e));
    	}
    	return res;
    }
    
    int a, b, c, d;
    
    int main() {
    	while (scanf("%d %d %d %d", &a, &b, &c, &d) != EOF) {
    		if (a == b && b == c && c == d) {
    			db res = a * b;
    			printf("%.10f
    ", res);
    			continue;
    		}
    		db res = f(a, b, c, d);
    		res = max(res, f(a, c, b, d));
    		res = max(res, f(a, d, b, c));
    		printf("%.15f
    ", res);
    	}
    	return 0;
    }
    

    K Kingpin Escape

    题意:
    给出一棵树,有一个特殊点,现在可以额外加一些边,使得不管删去原树中的哪条边,每个点仍然可以到达特殊点

    view code
    #include <bits/stdc++.h>
    
    using namespace std;
    
    int n, m;
    vector<vector<int> >G;
    vector<int> vec;
    
    void gao(int u, int fa) {
    	if (G[u].size() == 1) {
    		vec.push_back(u);
    		return ;
    	}
    	for (auto &v : G[u]) if (v != fa){
    		gao(v, u);
    	}
    }
    
    int main() {
    	while (scanf("%d %d", &n, &m) != EOF) {
    		G.clear();
    		G.resize(n);
    		vec.clear();
    		for (int i = 1, u, v; i < n; ++i) {
    			scanf("%d %d", &u, &v);
    			G[u].push_back(v);
    			G[v].push_back(u);
    		}
    		if (n == 2) {
    			puts("1");
    			puts("0 1");
    			continue;
    		}
    		int rt = 0;
    		for (int i = 0; i < n; ++i) {
    			if (G[i].size() > 1) {
    				rt = i;
    				break;
    			}
    		}
    		gao(rt, rt);
    		int sze = vec.size();
    		int cnt = (sze + 1) / 2;
    		printf("%d
    ", cnt);
    		for (int i = 0; i + cnt < sze; ++i) {
    			printf("%d %d
    ", vec[i], vec[i + cnt]);
    		}
    		if (sze & 1) {
    			if (vec[cnt - 1] != m) {
    				printf("%d %d
    ", vec[cnt - 1], m);
    			} else {
    				printf("%d %d
    ", vec[cnt - 1], vec[cnt - 2]);
    			}
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    业务逻辑层封装
    了解ASP.NET MVC几种ActionResult的本质:EmptyResult & ContentResult
    Facade外观模式
    了解ASP.NET MVC几种ActionResult的本质:FileResult
    示例代码浏览器5.4功能更新
    面试体验:Microsoft 篇
    Mono 2.11.3 发布包含微软的 Entity Framework
    系统架构设计师
    对数据访问层的抽象中
    说说项目中的插件思想
  • 原文地址:https://www.cnblogs.com/Dup4/p/11603310.html
Copyright © 2011-2022 走看看