zoukankan      html  css  js  c++  java
  • LintCode Longest Increasing Continuous subsequence II

    原题链接在这里:http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence-ii/

    题目:

    Give you an integer matrix (with row size n, column size m),find the longest increasing continuous subsequence in this matrix. (The definition of the longest increasing continuous subsequence here can start at any row or column and go up/down/right/left any direction).

    Example

    Given a matrix:

    [
      [1 ,2 ,3 ,4 ,5],
      [16,17,24,23,6],
      [15,18,25,22,7],
      [14,19,20,21,8],
      [13,12,11,10,9]
    ]
    

    return 25

    题解:

    DP. 状态是当前点为结束点,能有的最长延展长度. 转移方程是若周围四个方向有比我小的, 取符合条件的较大长度加1 dp[i][j] = Math.max(dp[dx][dy])+1.

    但问题是如何按照由大到小的方向iterate 矩阵, 可以使用dfs.

    Time Complexity: O(m * n), 每个点最多走两遍.

    Space: O(m * n).

    AC Java:

     1 public class Solution {
     2     public int longestIncreasingContinuousSubsequenceII(int[][] A) {
     3         if(A == null || A.length == 0|| A[0].length == 0){
     4             return 0;
     5         }
     6         
     7         int res = 1;
     8         int m = A.length;
     9         int n = A[0].length;
    10         int [][] dp = new int[m][n];
    11         boolean [][] visited = new boolean[m][n];
    12         for(int i = 0; i<m; i++){
    13             for(int j = 0; j<n; j++){
    14                 dp[i][j] = dfs(A, i, j, visited, dp);
    15                 res = Math.max(res, dp[i][j]);
    16             }
    17         }
    18         return res;
    19     }
    20     
    21     int [][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    22     private int dfs(int [][] A, int i, int j, boolean [][] visited, int [][] dp){
    23         if(visited[i][j]){
    24             return dp[i][j];
    25         }
    26         
    27         int res = 1;
    28         int m = A.length;
    29         int n = A[0].length;
    30         for(int [] dir : dirs){
    31             int dx = i + dir[0];
    32             int dy = j + dir[1];
    33             if(dx>=0 && dx<m && dy>=0 && dy<n && A[i][j]>A[dx][dy]){
    34                 res = Math.max(res, dfs(A, dx, dy, visited, dp)+1);
    35             }
    36         }
    37         visited[i][j] = true;
    38         dp[i][j] = res;
    39         return res;
    40     }
    41 }

    类似Longest Increasing Continuous Subsequence.

  • 相关阅读:
    GDB的Breakpoint, Watchpoint和Catchpoint
    sed初学
    比较两个文本不同的行/比较两个文本相同的行
    sprintf()函数基本用法
    vim不用鼠标复制粘贴
    SQL基础-语法
    SQL基础-简介
    XPath学习笔记
    jQuery选择器
    Ubuntu常用命令
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/6405207.html
Copyright © 2011-2022 走看看