zoukankan      html  css  js  c++  java
  • LintCode Longest Increasing Continuous subsequence II

    原题链接在这里:http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence-ii/

    题目:

    Give you an integer matrix (with row size n, column size m),find the longest increasing continuous subsequence in this matrix. (The definition of the longest increasing continuous subsequence here can start at any row or column and go up/down/right/left any direction).

    Example

    Given a matrix:

    [
      [1 ,2 ,3 ,4 ,5],
      [16,17,24,23,6],
      [15,18,25,22,7],
      [14,19,20,21,8],
      [13,12,11,10,9]
    ]
    

    return 25

    题解:

    DP. 状态是当前点为结束点,能有的最长延展长度. 转移方程是若周围四个方向有比我小的, 取符合条件的较大长度加1 dp[i][j] = Math.max(dp[dx][dy])+1.

    但问题是如何按照由大到小的方向iterate 矩阵, 可以使用dfs.

    Time Complexity: O(m * n), 每个点最多走两遍.

    Space: O(m * n).

    AC Java:

     1 public class Solution {
     2     public int longestIncreasingContinuousSubsequenceII(int[][] A) {
     3         if(A == null || A.length == 0|| A[0].length == 0){
     4             return 0;
     5         }
     6         
     7         int res = 1;
     8         int m = A.length;
     9         int n = A[0].length;
    10         int [][] dp = new int[m][n];
    11         boolean [][] visited = new boolean[m][n];
    12         for(int i = 0; i<m; i++){
    13             for(int j = 0; j<n; j++){
    14                 dp[i][j] = dfs(A, i, j, visited, dp);
    15                 res = Math.max(res, dp[i][j]);
    16             }
    17         }
    18         return res;
    19     }
    20     
    21     int [][] dirs = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
    22     private int dfs(int [][] A, int i, int j, boolean [][] visited, int [][] dp){
    23         if(visited[i][j]){
    24             return dp[i][j];
    25         }
    26         
    27         int res = 1;
    28         int m = A.length;
    29         int n = A[0].length;
    30         for(int [] dir : dirs){
    31             int dx = i + dir[0];
    32             int dy = j + dir[1];
    33             if(dx>=0 && dx<m && dy>=0 && dy<n && A[i][j]>A[dx][dy]){
    34                 res = Math.max(res, dfs(A, dx, dy, visited, dp)+1);
    35             }
    36         }
    37         visited[i][j] = true;
    38         dp[i][j] = res;
    39         return res;
    40     }
    41 }

    类似Longest Increasing Continuous Subsequence.

  • 相关阅读:
    jsp get参数乱码问题
    oracle 列相减——(Oracle分析函数Lead(),Lag())
    js获取本机id
    java mar --->JSONArray.fromObject
    五级菜单
    15 Spring Boot Shiro 验证码
    13 Spring Boot Shiro使用JS-CSS-IMG
    8:Spring Boot中thymeleaf模板中使用 Shiro标签
    8:Spring Boot Shiro记住密码
    阿里巴巴的阿里云中央仓库
  • 原文地址:https://www.cnblogs.com/Dylan-Java-NYC/p/6405207.html
Copyright © 2011-2022 走看看