zoukankan      html  css  js  c++  java
  • poj3264RMQ

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 28835   Accepted: 13579
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q. Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    RMQ算法:
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <queue>
     4 #include <math.h>
     5 #include <string.h>
     6 #include <algorithm>
     7 using namespace std;
     8 #include <vector>
     9 int main()
    10 {
    11     int n,k;
    12     scanf("%d%d",&n,&k);
    13     int dp[20][51000];
    14     memset(dp,0,sizeof(dp));
    15     int dp1[20][51000];
    16     memset(dp1,0,sizeof(dp1));
    17     int i,j;
    18     for(i=1;i<=n;i++)
    19     {
    20         scanf("%d",&dp[0][i]);
    21         dp1[0][i]=dp[0][i];
    22     }
    23     for(i=1;i<=log(n)/log(2);i++)
    24     for(j=1;j<n+(1<<(i-1));j++)
    25     {
    26         dp[i][j]=max(dp[i-1][j],dp[i-1][j+(1<<(i-1))]);
    27         dp1[i][j]=min(dp1[i-1][j],dp1[i-1][j+(1<<(i-1))]);
    28     }
    29     int x,y;
    30     for(i=0;i<k;i++)
    31     {
    32         scanf("%d%d",&x,&y);
    33         int t=log(y-x+1)/log(2);
    34         printf("%d
    ",max(dp[t][x],dp[t][y-(1<<t)+1])-min(dp1[t][x],dp1[t][y+1-(1<<t)]));
    35     }
    36 
    37 }
    View Code
  • 相关阅读:
    线程同步(一)
    java守护线程
    C/C++中如何获取数组的长度?
    java操作xml方式比较与详解(DOM、SAX、JDOM、DOM4J)
    按单词逆序句子(含标点)
    常见误区(一)
    java创建XML及开源DOM4J的使用
    C++学习(一)
    java读XML文件
    MiniProfiler 兼容 Entity Framework 6
  • 原文地址:https://www.cnblogs.com/ERKE/p/3256968.html
Copyright © 2011-2022 走看看