zoukankan      html  css  js  c++  java
  • Football 概率DP poj3071

                                                                                                 Football
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2590   Accepted: 1315

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2


     1 #include <iostream>
     2 #include <stdio.h>
     3 using namespace std;
     4 double a[1<<10][1<<10];
     5 double dp[10][1<<10];
     6 int main()
     7 {
     8     int n,i,j,k;
     9     while(cin>>n)
    10     {
    11         if(n==-1)break;
    12         for(i=0; i<1<<n; i++)
    13             for(j=0; j<1<<n; j++)
    14                 scanf("%lf",&a[i][j]);
    15         for(i=0; i<1<<n; i++)dp[0][i]=1;
    16         for(i=1;i<=n;i++)
    17         {
    18             for(j=0;j<1<<n;j++)
    19             {
    20                 dp[i][j]=0;
    21                 int start=((j>>(i-1))^1)<<(i-1);
    22                 int num=1<<(i-1);
    23                 for(k=start;k<num+start;k++)
    24                 dp[i][j]+=dp[i-1][j]*dp[i-1][k]*a[j][k];
    25             }
    26         }
    27    double max=0,an=0;
    28    for(i=0;i<1<<n;i++)
    29    {
    30        if(dp[n][i]>max)
    31        {
    32            max=dp[n][i];
    33            an=i;
    34        }
    35    }
    36    cout<<an+1<<endl;
    37     }
    38 }
    View Code
  • 相关阅读:
    遗传算法优化BP神经网络——非线性函数拟合
    BP神经网络的数据分类——语音特征信号分类
    HTML5新特性
    HTML5——FileReader详解
    javaScript构造函数显式提供返回值
    react截图组件react-cropper的使用方法
    Ant Design of React的安装和使用方法
    flex布局
    CSS常用的元素居中方法
    javaScript异步编程
  • 原文地址:https://www.cnblogs.com/ERKE/p/3576375.html
Copyright © 2011-2022 走看看