zoukankan      html  css  js  c++  java
  • Even Parity uva11464 模拟

    Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

    []   [Go Back]   [Status]  

    Description

     

    D

    Even Parity

    Input: Standard Input

    Output: Standard Output

     

    We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1). 
    The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

    Suppose we have a grid of size 4 x 4: 

    1

    0

    1

    0

    The parity of each cell would be

    1

    3

    1

    2

    1

    1

    1

    1

    2

    3

    3

    1

    0

    1

    0

    0

    2

    1

    2

    1

    0

    0

    0

    0

    0

    1

    0

    0

    For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

     
    Input

    The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

    Output

    For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

    Sample Input                             Output for Sample Input

    3 
    3 
    0 0 0 
    0 0 0 
    0 0 0 
    3 
    0 0 0 
    1 0 0 
    0 0 0 
    3 
    1 1 1 
    1 1 1 
    0 0 0 
    
                
              

    Case 1: 0 
    Case 2: 3 
    Case 3: -1

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<stdlib.h>
     4 #include<time.h>
     5 #include<iostream>
     6 #include<algorithm>
     7 using namespace std;
     8 int a[20][20],n,b[20][20];
     9 long long ab;
    10 int fun1(int x,int y)
    11 {
    12     return b[x][y+1]^b[x][y-1]^b[x-1][y];
    13 }
    14 int fun(int x)
    15 {
    16     if((ab&x)!=ab)return 11111110;
    17     memset(b,0,sizeof(b));
    18     int i,j,ans=0;
    19     for(i=n; i>=1; i--)
    20     {
    21         b[1][i]=x&1;
    22         if(b[1][i]^a[1][i])
    23         {
    24             if(b[1][i])ans++;
    25         }
    26         x>>=1;
    27     }
    28     for(i=2; i<=n; i++)
    29     {
    30         for(j=1; j<=n; j++)
    31         {
    32             b[i][j]=fun1(i-1,j);
    33             if(b[i][j]^a[i][j])
    34             {
    35                 if(b[i][j])
    36                     ans++;
    37                 else return 11111110;
    38             }
    39         }
    40     }
    41     return ans;
    42 }
    43 int main()
    44 {
    45     int T,i,j,k,size,ans;
    46     scanf("%d",&T);
    47     for(i=1; i<=T; i++)
    48     {
    49         ans=11111110;
    50         memset(a,0,sizeof(a));
    51         scanf("%d",&n);
    52         for(j=1; j<=n; j++)
    53             for(k=1; k<=n; k++)
    54                 scanf("%d",&a[j][k]);
    55         size=(1<<n);
    56         ab=0;
    57         for(j=1; j<=n; j++)
    58         {
    59             ab=(ab<<1)+a[1][j];
    60         }
    61         for(j=0; j<size; j++)
    62         {
    63             int y=fun(j);
    64             ans=ans>y?y:ans;
    65         }
    66         if(ans==11111110)ans=-1;
    67         printf("Case %d: %d
    ",i,ans);
    68     }
    69 }
    View Code
  • 相关阅读:
    计算机网络 实验之 面向连接和无连接的套接字到底有什么区别?
    计算机网络 实验之 Internet 套接字
    计算机网络 实验之 socket是什么?套接字是什么?
    PepperLa's Boast(单调队列优化二维dp)
    理想的正方形(单调队列在二维的应用)
    移相器以及相控阵雷达移相器位数的选择
    盲速和频闪——雷达
    多普勒效应----雷达
    线性调频(LFM)脉冲压缩-----------雷达
    雷达----脉冲压缩
  • 原文地址:https://www.cnblogs.com/ERKE/p/3683810.html
Copyright © 2011-2022 走看看