zoukankan      html  css  js  c++  java
  • Print Article hdu 3507 一道斜率优化DP 表示是基础题,但对我来说很难

    Print Article

    Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 4990    Accepted Submission(s): 1509


    Problem Description
    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
    One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

    M is a const number.
    Now Zero want to know the minimum cost in order to arrange the article perfectly.
     
    Input
    There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
     
    Output
    A single number, meaning the mininum cost to print the article.
     
    Sample Input
    5 5
    5
    9
    5
    7
    5
     
    Sample Output
    230
     
     
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <algorithm>
     4 #include <string.h>
     5 #include <set>
     6 using namespace std;
     7 int a[600000],sum[600000],h[600000],dp[600000],m;
     8 int getup(int j,int k)
     9 {
    10     return dp[j]+sum[j]*sum[j]-dp[k]-sum[k]*sum[k];
    11 }
    12 int getdown(int j,int k)
    13 {
    14     return ((sum[j]-sum[k])<<1);
    15 }
    16 int getdp(int i,int j)
    17 {
    18     return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
    19 }
    20 int main()
    21 {
    22     int n,i,head,tail;
    23     while(~scanf("%d%d",&n,&m))
    24     {
    25         memset(h,0,sizeof(h));
    26         sum[0]=a[0]=0;
    27         for(i=1; i<=n; i++)
    28             scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    29             head=tail=0;
    30             h[tail++]=0;
    31         for(i=1;i<=n;i++)
    32         {
    33             while(head+1<tail&&getup(h[head+1],h[head])<=sum[i]*getdown(h[head+1],h[head]))
    34             head++;
    35             dp[i]=getdp(i,h[head]);
    36             while(head+1<tail&&getup(h[tail-1],h[tail-2])*getdown(i,h[tail-1])>=getup(i,h[tail-1])*getdown(h[tail-1],h[tail-2]))
    37             tail--;
    38             h[tail++]=i;
    39         }
    40         cout<<dp[i-1]<<endl;
    41     }
    42 }
    View Code
  • 相关阅读:
    UVA1627-Team them up!(二分图判断+动态规划)
    UVA10817-Headmaster's Headache(动态规划基础)
    UVA1626-Brackets sequence(动态规划基础)
    UVA11584-Partitioning by Palindromes(动态规划基础)
    UVA11584-Partitioning by Palindromes(动态规划基础)
    UVA11400-Lighting System Design(动态规划基础)
    UVA12563-Jin Ge Jin Qu hao(动态规划基础)
    UVA116-Unidirectional TSP(动态规划基础)
    JavaScriptCore框架在iOS7中的对象交互和管理
    iOS7新JavaScriptCore框架入门介绍
  • 原文地址:https://www.cnblogs.com/ERKE/p/3833612.html
Copyright © 2011-2022 走看看