zoukankan      html  css  js  c++  java
  • 关于调和级数的证明

    考虑 (ln (1+x)) 的麦克劳林展开式 (x-dfrac{x^2}{2}+dfrac{x^3}{3}-dfrac{x^4}{4}+dfrac{x^5}{5}-dots)

    (x=dfrac{1}{v}) 可得 (ln(1+dfrac{1}{v})=dfrac{1}{v}-dfrac{1}{2v^2}+dfrac{1}{3v^3}-dfrac{1}{4v^4}+dots)

    (dfrac{1}{v}=ln(1+dfrac{1}{v})+dfrac{1}{2v^2}-dfrac{1}{3v^3}+dfrac{1}{4v^4}-dots)

    (v=1,2,3,dots,n),并将得到的式子加起来可得:

    左边 (=1+dfrac{1}{2}+dfrac{1}{3}+dots+dfrac{1}{n})

    右边 (=ln(dfrac{2}{1})+ln(dfrac{3}{2})+dots+ln(dfrac{n+1}{n})+)
    (dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})-dfrac{1}{3}(1+dfrac{1}{2^3}+dfrac{1}{3^3}+dots+dfrac{1}{n^3})+dots)

    根据对数的性质有 (ln(dfrac{2}{1})+ln(dfrac{3}{2})+dots+ln(dfrac{n+1}{n})=ln(dfrac{2}{1} imesdfrac{3}{2} imesdots imesdfrac{n+1}{n})=ln(n+1))

    (C=dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})-dfrac{1}{3}(1+dfrac{1}{2^3}+dfrac{1}{3^3}+dots+dfrac{1}{n^3})+dots)

    (=1+dfrac{1}{2}+dfrac{1}{3}+dots+dfrac{1}{n}=ln(n+1)+C)

    现在我们的任务就是求出 (C) 的大致范围。

    (P(t)=dfrac{1}{t}(1+dfrac{1}{2^t}+dfrac{1}{3^t}+dots+dfrac{1}{n^t}))

    (C=P(2)-P(3)+P(4)-P(5)+dots)

    显然 (P(i)<P(i+1))

    一方面 (C=(P(2)-P(3))+(P(4)-P(5))+dots>0)

    另一方面 (C=P(2)-(P(3)-P(4))-(P(5)-P(6))+dots<P(2))

    (P(2)=dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})<dfrac{1}{2}(1+1+dfrac{1}{1 imes 2}+dfrac{1}{2 imes 3}+dots+dfrac{1}{n imes(n+1)}=1-dfrac{1}{2n(n+1)}<1)

    (0<C<1)

    证毕

  • 相关阅读:
    UVA 10462 Is There A Second Way Left?(次小生成树&Prim&Kruskal)题解
    POJ 1679 The Unique MST (次小生成树)题解
    POJ 2373 Dividing the Path (单调队列优化DP)题解
    BZOJ 2709 迷宫花园
    BZOJ 1270 雷涛的小猫
    BZOJ 2834 回家的路
    BZOJ 2506 calc
    BZOJ 3124 直径
    BZOJ 4416 阶乘字符串
    BZOJ 3930 选数
  • 原文地址:https://www.cnblogs.com/ET2006/p/thjs.html
Copyright © 2011-2022 走看看