zoukankan      html  css  js  c++  java
  • 关于调和级数的证明

    考虑 (ln (1+x)) 的麦克劳林展开式 (x-dfrac{x^2}{2}+dfrac{x^3}{3}-dfrac{x^4}{4}+dfrac{x^5}{5}-dots)

    (x=dfrac{1}{v}) 可得 (ln(1+dfrac{1}{v})=dfrac{1}{v}-dfrac{1}{2v^2}+dfrac{1}{3v^3}-dfrac{1}{4v^4}+dots)

    (dfrac{1}{v}=ln(1+dfrac{1}{v})+dfrac{1}{2v^2}-dfrac{1}{3v^3}+dfrac{1}{4v^4}-dots)

    (v=1,2,3,dots,n),并将得到的式子加起来可得:

    左边 (=1+dfrac{1}{2}+dfrac{1}{3}+dots+dfrac{1}{n})

    右边 (=ln(dfrac{2}{1})+ln(dfrac{3}{2})+dots+ln(dfrac{n+1}{n})+)
    (dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})-dfrac{1}{3}(1+dfrac{1}{2^3}+dfrac{1}{3^3}+dots+dfrac{1}{n^3})+dots)

    根据对数的性质有 (ln(dfrac{2}{1})+ln(dfrac{3}{2})+dots+ln(dfrac{n+1}{n})=ln(dfrac{2}{1} imesdfrac{3}{2} imesdots imesdfrac{n+1}{n})=ln(n+1))

    (C=dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})-dfrac{1}{3}(1+dfrac{1}{2^3}+dfrac{1}{3^3}+dots+dfrac{1}{n^3})+dots)

    (=1+dfrac{1}{2}+dfrac{1}{3}+dots+dfrac{1}{n}=ln(n+1)+C)

    现在我们的任务就是求出 (C) 的大致范围。

    (P(t)=dfrac{1}{t}(1+dfrac{1}{2^t}+dfrac{1}{3^t}+dots+dfrac{1}{n^t}))

    (C=P(2)-P(3)+P(4)-P(5)+dots)

    显然 (P(i)<P(i+1))

    一方面 (C=(P(2)-P(3))+(P(4)-P(5))+dots>0)

    另一方面 (C=P(2)-(P(3)-P(4))-(P(5)-P(6))+dots<P(2))

    (P(2)=dfrac{1}{2}(1+dfrac{1}{2^2}+dfrac{1}{3^2}+dots+dfrac{1}{n^2})<dfrac{1}{2}(1+1+dfrac{1}{1 imes 2}+dfrac{1}{2 imes 3}+dots+dfrac{1}{n imes(n+1)}=1-dfrac{1}{2n(n+1)}<1)

    (0<C<1)

    证毕

  • 相关阅读:
    电容
    IC行业常见用语
    MOSFET 的 I / V 特性曲线
    MOS 预夹断到底是什么
    [ Skill ] 如何 flatten 一个 list
    Metal 线宽如何选择
    [ Skill ] 如何读取一个文件并打印出来
    PHP 当前时间秒数+数值,然后再转换成时间。
    PHP HTTP GET POST
    做一个菜鸟,写一些自己自己编程错误的地方。个人所遇到的问题 保存处
  • 原文地址:https://www.cnblogs.com/ET2006/p/thjs.html
Copyright © 2011-2022 走看看