神仙最小割……好久没写过网络流了,故写题解以祭之(
首先考虑一个非常 trivial 的问题:如果知道排列顺序之后怎样计算最大值,用脚趾头想一下就能知道是原序列的最大子段和,因为每个课程之后的 rating 显然相当于前缀和,前缀和相减自然就是区间和了。
我们假设最大区间和为 ([l,r]),那么我们考虑将序列分成三段 ([1,l-1],[l,r],[r+1,n]),一个很显然的性质是由于限制关系不成环,因此段内部的相对位置关系是不重要的,也就是说我们只要钦定每个元素在哪一段,就总存在一种排列方式符合限制要求。而显然一个元素只有在中间一段才能对答案产生贡献。
这样就可以最小割了呗,记 (S=sumlimits_{i=1}^nmax(w_i,0)),也就是 (w) 序列中所有正权值的和,我们考虑这样建图:将每个点拆成 (in_i) 和 (out_i) 两个点,对于 (w_i>0) 的点连边 (S o in_i),容量 (w_i),(in_i o out_i),容量 (0),(out_i o T),容量 (w_i);对于 (w_i<0) 的点连边 (S o in_i),容量 (0),(in_i o out_i),容量 (-w_i),(out_i o T),容量 (0)。割掉 (S o in_i) 的边表示 (i) 在第一段 ([1,l-1]),割掉 (in_i o out_i) 表示 (i) 在第二段 ([l,r]),割掉 (out_i o T) 表示 (i) 在第三段 ([r+1,n])。那么怎么处理限制关系呢?对于每对 (a_i,b_i) 连边 (in_{a_i} o in_{b_i},out_{a_i} o out_{b_i}),容量均为 (infty) 即可。然后答案就是 (S-) 最小割。
const int MAXV=102;
const int MAXE=2.5e3*2;
const int INF=0x3f3f3f3f;
int n,S,T,hd[MAXV+5],to[MAXE+5],nxt[MAXE+5],cap[MAXE+5],ec=1;
void adde(int u,int v,int f){
to[++ec]=v;cap[ec]=f;nxt[ec]=hd[u];hd[u]=ec;
to[++ec]=u;cap[ec]=0;nxt[ec]=hd[v];hd[v]=ec;
}
int dep[MAXV+5],now[MAXV+5];
bool getdep(){
memset(dep,-1,sizeof(dep));dep[S]=0;
queue<int> q;q.push(S);now[S]=hd[S];
while(!q.empty()){
int x=q.front();q.pop();
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=cap[e];
if(z&&!~dep[y]){
dep[y]=dep[x]+1;
now[y]=hd[y];q.push(y);
}
}
} return ~dep[T];
}
int getflow(int x,int f){
if(x==T) return f;int ret=0;
for(int &e=now[x];e;e=nxt[e]){
int y=to[e],z=cap[e];
if(z&&dep[y]==dep[x]+1){
int w=getflow(y,min(f-ret,z));
ret+=w;cap[e]-=w;cap[e^1]+=w;
if(f==ret) return ret;
}
} return ret;
}
int dinic(){
int ret=0;
while(getdep()) ret+=getflow(S,INF);
return ret;
}
struct RatingProgressAward{
int maximalProgress(vector<int> val,vector<int> a,vector<int> b){
n=val.size();T=(S=n<<1|1)+1;int sum=0;
for(int i=1;i<=n;i++){
if(val[i-1]>0) adde(S,i,val[i-1]),adde(i,i+n,0),adde(i+n,T,val[i-1]),sum+=val[i-1];
else adde(S,i,0),adde(i,i+n,-val[i-1]),adde(i+n,T,0);
} for(int i=0;i<a.size();i++){++a[i];++b[i];adde(a[i],b[i],INF);adde(a[i]+n,b[i]+n,INF);}
return sum-dinic();
}
};