zoukankan      html  css  js  c++  java
  • Leetcode: Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
    
    For example,
    Given [3,2,1,5,6,4] and k = 2, return 5.
    
    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    The same with Lintcode: Kth largest element

    快速选择 Quick Select

    复杂度

    时间 Avg O(N) Worst O(N^2) 空间 O(1)

    One thing to notice is 23-24 line, still find kth smallest element, do not need to decrease from k because the indexing(编号) does not change

     1 public class Solution {
     2     public int findKthLargest(int[] nums, int k) {
     3         int len = nums.length;
     4         return findKthSmallest(nums, 0, len-1, len-k+1);
     5     }
     6     
     7     public int findKthSmallest(int[] nums, int start, int end, int k) {
     8         int l = start;
     9         int r = end;
    10         int pivot = end;
    11         while (l < r) {
    12             while (l<r && nums[l] < nums[pivot]) {
    13                 l++;
    14             }
    15             while (l<r && nums[r] >= nums[pivot]) {
    16                 r--;
    17             }
    18             if (l == r) break;
    19             swap(nums, l, r);
    20         }
    21         swap(nums, l, pivot);
    22         if (l+1 == k) return nums[l];
    23         else if (l+1 < k) return findKthSmallest(nums, l+1, end, k);
    24         else return findKthSmallest(nums, start, l-1, k);
    25     }
    26     
    27     public void swap(int[] nums, int l, int r) {
    28         int temp = nums[l];
    29         nums[l] = nums[r];
    30         nums[r] = temp;
    31     }
    32 }

    优先队列

    复杂度

    时间 O(NlogK) 空间 O(K)

    思路

    遍历数组时将数字加入优先队列(堆),一旦堆的大小大于k就将堆顶元素去除,确保堆的大小为k。遍历完后堆顶就是返回值。

     1 public class Solution {
     2     public int findKthLargest(int[] nums, int k) {
     3         PriorityQueue<Integer> p = new PriorityQueue<Integer>();
     4         for(int i = 0 ; i < nums.length; i++){
     5             p.add(nums[i]);
     6             if(p.size()>k) p.poll();
     7         }
     8         return p.poll();
     9     }
    10 }

    用最大堆也可以,把所有元素加进去后,poll K次

  • 相关阅读:
    wordpress 的主题
    yapi api协作管理平台
    美团外卖券小程序路径过长导致插入文本消息失败的问题解决办法
    mp://XzDiXafjfvLnjvp
    supervisor 命令
    YII beego gin 框架对比
    芝麻微客-企业微信公域到私域流量运营助手
    H5跳转小程序
    PowerBI开发 第十九篇:基于Page创建Tooltip
    PowerBI开发 第十八篇:行级安全(RLS)
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/5052893.html
Copyright © 2011-2022 走看看