zoukankan      html  css  js  c++  java
  • Leetcode: Kth Largest Element in an Array

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
    
    For example,
    Given [3,2,1,5,6,4] and k = 2, return 5.
    
    Note: 
    You may assume k is always valid, 1 ≤ k ≤ array's length.

    The same with Lintcode: Kth largest element

    快速选择 Quick Select

    复杂度

    时间 Avg O(N) Worst O(N^2) 空间 O(1)

    One thing to notice is 23-24 line, still find kth smallest element, do not need to decrease from k because the indexing(编号) does not change

     1 public class Solution {
     2     public int findKthLargest(int[] nums, int k) {
     3         int len = nums.length;
     4         return findKthSmallest(nums, 0, len-1, len-k+1);
     5     }
     6     
     7     public int findKthSmallest(int[] nums, int start, int end, int k) {
     8         int l = start;
     9         int r = end;
    10         int pivot = end;
    11         while (l < r) {
    12             while (l<r && nums[l] < nums[pivot]) {
    13                 l++;
    14             }
    15             while (l<r && nums[r] >= nums[pivot]) {
    16                 r--;
    17             }
    18             if (l == r) break;
    19             swap(nums, l, r);
    20         }
    21         swap(nums, l, pivot);
    22         if (l+1 == k) return nums[l];
    23         else if (l+1 < k) return findKthSmallest(nums, l+1, end, k);
    24         else return findKthSmallest(nums, start, l-1, k);
    25     }
    26     
    27     public void swap(int[] nums, int l, int r) {
    28         int temp = nums[l];
    29         nums[l] = nums[r];
    30         nums[r] = temp;
    31     }
    32 }

    优先队列

    复杂度

    时间 O(NlogK) 空间 O(K)

    思路

    遍历数组时将数字加入优先队列(堆),一旦堆的大小大于k就将堆顶元素去除,确保堆的大小为k。遍历完后堆顶就是返回值。

     1 public class Solution {
     2     public int findKthLargest(int[] nums, int k) {
     3         PriorityQueue<Integer> p = new PriorityQueue<Integer>();
     4         for(int i = 0 ; i < nums.length; i++){
     5             p.add(nums[i]);
     6             if(p.size()>k) p.poll();
     7         }
     8         return p.poll();
     9     }
    10 }

    用最大堆也可以,把所有元素加进去后,poll K次

  • 相关阅读:
    P5331 [SNOI2019]通信
    P3700 [CQOI2017]小Q的表格
    Linux
    P3268 [JLOI2016]圆的异或并
    P3317 [SDOI2014]重建
    P5492 [PKUWC2018]随机算法
    P3210 [HNOI2010]取石头游戏
    支配树
    P5401 [CTS2019]珍珠
    P4027 [NOI2007]货币兑换
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/5052893.html
Copyright © 2011-2022 走看看