Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region. Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)). Example 1:
rectangles = [ [1,1,3,3], [3,1,4,2], [3,2,4,4], [1,3,2,4], [2,3,3,4] ] Return true. All 5 rectangles together form an exact cover of a rectangular region. Example 2:
rectangles = [ [1,1,2,3], [1,3,2,4], [3,1,4,2], [3,2,4,4] ] Return false. Because there is a gap between the two rectangular regions. Example 3:
rectangles = [ [1,1,3,3], [3,1,4,2], [1,3,2,4], [3,2,4,4] ] Return false. Because there is a gap in the top center. Example 4:
rectangles = [ [1,1,3,3], [3,1,4,2], [1,3,2,4], [2,2,4,4] ] Return false. Because two of the rectangles overlap with each other.
Refer to https://discuss.leetcode.com/topic/56052/really-easy-understanding-solution-o-n-java
and https://discuss.leetcode.com/topic/55923/o-n-solution-by-counting-corners-with-detailed-explaination
Idea
Consider how the corners of all rectangles appear in the large rectangle if there's a perfect rectangular cover.
Rule1: The local shape of the corner has to follow one of the three following patterns
- Corner of the large rectangle (blue): it occurs only once among all rectangles
- T-junctions (green): it occurs twice among all rectangles
- Cross (red): it occurs four times among all rectangles
For each point being a corner of any rectangle, it should appear even times except the 4 corners of the large rectangle. So we can put those points into a hash map and remove them if they appear one more time.
At the end, we should only get 4 points.
Rule2: the large rectangle area should be equal to the sum of small rectangles
1 public class Solution { 2 public boolean isRectangleCover(int[][] rectangles) { 3 if (rectangles==null || rectangles.length==0 || rectangles[0].length==0) return false; 4 int subrecAreaSum = 0; //sum of subrectangle's area 5 int x1 = Integer.MAX_VALUE; //large rectangle bottom left x-axis 6 int y1 = Integer.MAX_VALUE; //large rectangle bottom left y-axis 7 int x2 = Integer.MIN_VALUE; //large rectangle top right x-axis 8 int y2 = Integer.MIN_VALUE; //large rectangle top right y-axis 9 10 HashSet<String> set = new HashSet<String>(); // store points 11 12 for(int[] rec : rectangles) { 13 //check if it has large rectangle's 4 points 14 x1 = Math.min(x1, rec[0]); 15 y1 = Math.min(y1, rec[1]); 16 x2 = Math.max(x2, rec[2]); 17 y2 = Math.max(y2, rec[3]); 18 19 //calculate sum of subrectangles 20 subrecAreaSum += (rec[2]-rec[0]) * (rec[3] - rec[1]); 21 22 //store this rectangle's 4 points into hashSet 23 String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]); 24 String p2 = Integer.toString(rec[0]) + "" + Integer.toString(rec[3]); 25 String p3 = Integer.toString(rec[2]) + "" + Integer.toString(rec[1]); 26 String p4 = Integer.toString(rec[2]) + "" + Integer.toString(rec[3]); 27 28 if (!set.add(p1)) set.remove(p1); 29 if (!set.add(p2)) set.remove(p2); 30 if (!set.add(p3)) set.remove(p3); 31 if (!set.add(p4)) set.remove(p4); 32 } 33 34 if (set.size()!=4 || !set.contains(x1+""+y1) || !set.contains(x1+""+y2) || !set.contains(x2+""+y1) || !set.contains(x2+""+y2)) 35 return false; 36 return subrecAreaSum == (x2-x1) * (y2-y1); 37 } 38 }