zoukankan      html  css  js  c++  java
  • Leetcode: Perfect Rectangle

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region.
    
    Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)).
    
    
    Example 1:
    rectangles
    = [ [1,1,3,3], [3,1,4,2], [3,2,4,4], [1,3,2,4], [2,3,3,4] ] Return true. All 5 rectangles together form an exact cover of a rectangular region. Example 2:
    rectangles = [
      [1,1,2,3],
      [1,3,2,4],
      [3,1,4,2],
      [3,2,4,4]
    ]
    
    Return false. Because there is a gap between the two rectangular regions.
    
    Example 3:
    rectangles = [
      [1,1,3,3],
      [3,1,4,2],
      [1,3,2,4],
      [3,2,4,4]
    ]
    
    Return false. Because there is a gap in the top center.
    
    Example 4:
    
    
    rectangles = [
      [1,1,3,3],
      [3,1,4,2],
      [1,3,2,4],
      [2,2,4,4]
    ]
    
    Return false. Because two of the rectangles overlap with each other.

    Refer to https://discuss.leetcode.com/topic/56052/really-easy-understanding-solution-o-n-java

    and   https://discuss.leetcode.com/topic/55923/o-n-solution-by-counting-corners-with-detailed-explaination

    Idea

    0_1472399247817_perfect_rectangle.jpg

    Consider how the corners of all rectangles appear in the large rectangle if there's a perfect rectangular cover.
    Rule1: The local shape of the corner has to follow one of the three following patterns

      • Corner of the large rectangle (blue): it occurs only once among all rectangles
      • T-junctions (green): it occurs twice among all rectangles
      • Cross (red): it occurs four times among all rectangles

    For each point being a corner of any rectangle, it should appear even times except the 4 corners of the large rectangle. So we can put those points into a hash map and remove them if they appear one more time.

    At the end, we should only get 4 points. 

    Rule2:  the large rectangle area should be equal to the sum of small rectangles

     1 public class Solution {
     2     public boolean isRectangleCover(int[][] rectangles) {
     3         if (rectangles==null || rectangles.length==0 || rectangles[0].length==0) return false;
     4         int subrecAreaSum = 0;  //sum of subrectangle's area
     5         int x1 = Integer.MAX_VALUE; //large rectangle bottom left x-axis
     6         int y1 = Integer.MAX_VALUE; //large rectangle bottom left y-axis
     7         int x2 = Integer.MIN_VALUE; //large rectangle top right x-axis
     8         int y2 = Integer.MIN_VALUE; //large rectangle top right y-axis
     9         
    10         HashSet<String> set = new HashSet<String>(); // store points
    11         
    12         for(int[] rec : rectangles) {
    13             //check if it has large rectangle's 4 points
    14             x1 = Math.min(x1, rec[0]);
    15             y1 = Math.min(y1, rec[1]);
    16             x2 = Math.max(x2, rec[2]);
    17             y2 = Math.max(y2, rec[3]);
    18             
    19             //calculate sum of subrectangles
    20             subrecAreaSum += (rec[2]-rec[0]) * (rec[3] - rec[1]);
    21             
    22             //store this rectangle's 4 points into hashSet
    23             String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]);
    24             String p2 = Integer.toString(rec[0]) + "" + Integer.toString(rec[3]);
    25             String p3 = Integer.toString(rec[2]) + "" + Integer.toString(rec[1]);
    26             String p4 = Integer.toString(rec[2]) + "" + Integer.toString(rec[3]);
    27             
    28             if (!set.add(p1)) set.remove(p1);
    29             if (!set.add(p2)) set.remove(p2);
    30             if (!set.add(p3)) set.remove(p3);
    31             if (!set.add(p4)) set.remove(p4);
    32         }
    33         
    34         if (set.size()!=4 || !set.contains(x1+""+y1) || !set.contains(x1+""+y2) || !set.contains(x2+""+y1) || !set.contains(x2+""+y2))
    35             return false;
    36         return subrecAreaSum == (x2-x1) * (y2-y1);
    37     }
    38 }
  • 相关阅读:
    Java 8 新特性-菜鸟教程 (8) -Java 8 日期时间 API
    Java 8 新特性-菜鸟教程 (7) -Java 8 Nashorn JavaScript
    Java 8 新特性-菜鸟教程 (6) -Java 8 Optional 类
    心理相关
    matlab和Visio安装
    论文资料搜集整理(研究现状)
    调式相关
    梅花落与折杨柳
    混合高斯模型——学习笔记
    NSCT,非下采样Contourlet变换——学习笔记
  • 原文地址:https://www.cnblogs.com/EdwardLiu/p/6120467.html
Copyright © 2011-2022 走看看